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Introduction.

Let k be a finite extension of the field Q of rational numbers and p a fixed
prime number. A Galois extension K of k is called a Zp-extension when the
Galois group Gal(K/k) is topologically isomorphic to the additive group Zp of
p-adic integers. LetK be a Zp-extension of k, kn ⊂ K the unique cyclic extension
over k of degree pn and An the p-Sylow subgroup of the ideal class group of kn.
We denote by ♯A the number of elements of a finite set A.

Iwasawa proved the following theorem(see [I2]).

Theorem(Iwasawa). There exist three integers λ = λ(K/k), µ = µ(K/k) and
ν = ν(K/k) such that

♯An = pλn+µpn+ν

for all sufficiently large n.

Every k has at least one Zp-extension called the cyclotomic Zp-extension. We
denote by k∞ the cyclotomic Zp-extension of k.

Greenberg’s conjecture. If k is a totally real number field, then

λ(k∞/k) = µ(k∞/k) = 0 .

In other words the maximal unramified abelian p-extension of k∞ is a finite
extension.

By [I1], this conjecture is true for k = Q and p arbitrary. As experimental
results, this conjecture has been verified for p = 3 and many real quadratic fields
with small discriminants in [C], [G1], [FK], [FKW], [F], [K], [T] and [FT],

The main purpose of this paper is to give a “good” necessary and sufficient
condition for Greenberg’s conjecture. The condition is given in terms of some p-
ramified abelian p-extensions of kn and the Iwasawa polynomial associated to k.
Here a “good” condition means that it can be checked for n as little as possible.
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To check it, we need a lot of data (an “approximate” Iwasawa polynomial, basis
of the ideal class group, that of the unit group and that of the semi-local unit
group of kn).

Now, to explain our condition, we present a criterion for a special case. Let
k be a totally real number field and p an odd prime number. Fix a topological
generator γ0 of Γ = Gal(k∞/k). Let M be the maximal abelian p-extension of
k∞ unramified outside p, L the maximal unramified abelian p-extension of k∞
and L′ the maximal unramified abelian p-extension of k∞ in which every prime
divisor of k∞ above p splits completely. Put Y = Gal(M/k∞), I = Gal(M/L)
and D = Gal(M/L′). As usual, we may regard these Γ-modules Y , I and D as
Λ = Zp[[T ]]-modules by the identification T = γ0 − 1. Concerning the Galois
group Y , the following facts are known.
Y is a finitely generated Λ-torsion Λ-module (cf. [G1,Theorem 3]).
Y has no non-trivial finite Λ-submodule(cf. [I4,Theorem 18]).
Assume that µ-invariant of Y is zero, i.e. Y is a torsion-free Zp-module.

We denote by char(Y ) the characteristic polynomial of the action of T on Y .
Further, let Mn, Ln and L′n be the maximal abelian extension of kn in M , L
and L′ respectively. Then Gal(Mn/L

′
n) is isomorphic to (D + ωnY )/ωnY . We

can easily obtain the following more or less known criterion.

Criterion(special case). Assume that char(Y ) is irreducible in Zp[T ]. Then
Y/D is finite if only if (D + ωnY )/ωnY is not trivial for some integer n ≥ 0,
where ωn = (1 + T )p

n − 1.

This criterion is used mainly when char(Y ) is of degree 1 by some authors(e.g.
T. Fukuda, J.S. Kraft, H. Taya). Assume that Leopoldt’s conjecture(see, for
example, [W,Ch13]) is true for k and p, and that every prime ideal of k above
p is fully ramified in k∞. Then Y/D is finite if and only if Y/I is finite, i.e.
Greenberg’s conjecture is true for k and p (see Proposition 6).

In this paper, we extend this criterion to general case. As is shown above,
when char(Y ) is irreducible, we know a “good” condition. But, when char(Y )
is reducible, the matter becomes much more complicated. In order to obtain
a “good” one in general case, we need to study not only Gal(Mn/L

′
n) but also

a pair (Gal(Mn/k∞),Gal(Mn/L
′
n)). Moreover we need to compute an “ap-

proximate” polynomial of char(Y ) exactly. In §3, we give the general crite-
rion(Theorem 3).

As examples, we study real quadratic fields Q(
√
m) (m:square-free, 1 < m <

104) in which p = 3 splits. We explain how to check our criterion for these fields.
The total number of such fields is exactly 2279. T. Fukuda and H. Taya verified
the conjecture for 2227 fields among these fields by using some data of the ideal
class group and the p-unit group of k1(see [FT]). Further applying our criterion
to them, we verify the conjecture for at least 2236 fields. We can give some
examples for which the conjecture is true but was not verified before.
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An outline of this paper is as follows. In §1 we study some abelian extensions
of kn in M and the Galois groups I, D. In §2 we prepare some propositions
concerning Λ and Λ-modules. In §3 we give a necessary and sufficient condition
for Greenberg’s conjecture in terms of Λ-module structures of certain Galois
groups studied in §1. In §4 we give numerical examples. The main parts of this
paper are §3 and §4.

Acknowledgements. The author wishes to express his hearty thanks to Pro-
fessor Shōichi Nakajima, under whose guidance this work was done. He is also
grateful to other members of the Number Theory Seminar at Komaba, Tokyo,
especially to Professor Takashi Fukuda and Professor Hisao Taya for the tables
of §4 and to Professor Humio Ichimura and Professor Masakazu Yamagishi for
valuable comments.

§1 Some abelian extensions of kn in M .

In this section we assume that p is an odd prime number and that every prime
ideal of k above p is fully ramified in k∞.

Let M , L, L′, Mn, Ln and L′n be the same as in Introduction. We fix a non-
negative integer n. Let Kn be the maximal unramified abelian p-extension of kn
and K ′n the maximal unramified abelian p-extension of kn in which every prime
ideal of kn above p splits completely. Further, let Sn be the set of all prime
ideals of kn above p, Dn the subgroup of An consisting of classes containing an
ideal all of whose prime divisors are contained in Sn and A′n = An/Dn. For a
non-negative integer n and p ∈ S0, let pn ∈ Sn be the unique prime ideal lying
above p. For a prime divisor q of a field K, Kq denotes the completion of K at
q and Uq = UKq the principal unit group of Kq. Here we define the following
groups:

Un = {(upn) ∈
∏

pn∈Sn

Upn |
∏

pn∈Sn

(
upn , km/kn

pn

)
= 1 for all m ≥ n},

Vpn =
∩
m≥n

Nkm,pm/kn,pnUpm , Vn =
∏

pn∈Sn

Vpn

Wpn =
∩
m≥n

Nkm,pm/kn,pnk
×
m,pm , Wn =

∏
pn∈Sn

Wpn

where
(
u,k′/k

p

)
is the norm residue symbol. Let un be the diagonal map: k×n ↪→∏

pn∈Sn k
×
n,pn , En the unit group of kn and E′n the p-unit group of kn. We denote

by A the topological closure of A. Put

En = Un ∩ un(En), E′n = Un ∩ (un(E′n)Wn).
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Here note that ∏
pn∈Sn

(
ε′, km/kn

pn

)
= 1

for any ε′ ∈ E′n and all m ≥ n by the product formula.

Proposition 1. There are isomorphisms:

(a)Gal(K ′nk∞/k∞) ∼= Gal(K ′n/kn) ∼= A′n,

(b)Gal(L′n/K
′
nk∞) ∼= Gal(L′nKn/Knk∞) ∼= Un/VnE′n,

(c) Gal(L′nKn/L
′
n) ∼= Gal(Kn/K

′
n) ∼= Dn,

(d)Gal(Ln/L′nKn) ∼= VnE′n/VnEn,

(e)Gal(Mn/Ln) ∼= VnEn/En.

Proof. Since we assume that every prime ideal in S0 is fully ramified in k∞, we
have Kn ∩ k∞ = kn and Nkm/knpm = pn for m ≥ n. Hence we immediately
obtain (a) and (c) by class field theory. By considering kn as a base field of the
cyclotomic Zp-extension, we will show the other isomorphisms. For m ≥ 0, put

k×(m) = {(xp) ∈ (the idèle group of k) |
∏
p

(
xp, km/k

p

)
= 1},

(k×(m))
′ = {(xp) ∈

∏
p∈S0

k×p |
∏

p∈S0

(
xp, km/k

p

)
= 1},

U ′(m) = {(up) ∈
∏

p∈S0

Up |
∏

p∈S0

(
up, km/k

p

)
= 1},

Wp,(m) = Nkm,pm/kp
k×m,pm , Vp,(m) = Nkm,pm/kp

Upm .

Then we have

(k×(m))
′ ⊃ U ′(m) ⊃

∏
p∈S0

Vp,(m) ⊃
∏

p∈S0

Up
m

pm ,

(k×(m))
′ ⊃

∏
p∈S0

Wp,(m) ⊃
∏

p∈S0

Vp,(m) ⊃
∏

p∈S0

Up
m

pm .

By class field theory, the correspondences between some abelian extensions of k
and subgroups of idèle group of k are as follow:

km ↔ k×k×(m), kmK0 ↔ k×(U ′(m) ×
∏
q/∈S0

Uq),

kmK
′
0 ↔ k×((k×(m))

′ ×
∏
q/∈S0

Uq).
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Let M0,m be the abelian extension of k corresponding to k×(
∏

p∈S0
Up

m

p ×∏
q/∈S0

Uq). It is easy to see that M0,m is a finite extension of km. Let
L0,m ⊆ M0,m the maximal unramified extension of km and L′0,m ⊆ M0,m the
maximal unramified extension of km in which every prime ideal above p splits
completely. Then we have the following correspondences.

L0,m ↔⟨k×(Up ×
∏
q ̸=p

1)k×(
∏

p∈S0

Up
m

p ×
∏
q/∈S0

Uq) ∩ k×(U ′(m) ×
∏
q/∈S0

Uq) | p ∈ S0⟩

= k×(
∏

p∈S0

Vp,(m) ×
∏
q/∈S0

Uq),

L′0,m ↔⟨k×(k×p ×
∏
q ̸=p

1)k×(
∏

p∈S0

Up
m

p ×
∏
q/∈S0

Uq) ∩ k×((k×(m))
′ ×

∏
q/∈S0

Uq) | p ∈ S0⟩

= k×(
∏

p∈S0

Wp,(m) ×
∏
q/∈S0

Uq).

Therefore we have

Gal(L′0,m/K
′
0km) ∼= k×((k(m))′ ×

∏
q/∈S0

Uq)/k×(
∏

p∈S0

Wp,(m) ×
∏
q/∈S0

Uq)

∼= (U ′(m) ×
∏
q/∈S0

1)k×(
∏

p∈S0

Wp,(m) ×
∏
q/∈S0

Uq)/k×(
∏

p∈S0

Wp,(m) ×
∏
q/∈S0

Uq)

∼= (U ′(m) ×
∏
q/∈S0

1)/(U ′(m) ∩ (u0(E′0)
∏

p∈S0

Wp,(m))) ×
∏
q/∈S0

1,

Gal(L0,m/L
′
0,mK0)

∼= (k×(
∏

p∈S0

Wp,(m) ×
∏
q/∈S0

Uq) ∩ k×(U ′(m) ×
∏
q/∈S0

Uq))/k×(
∏

p∈S0

Vp,(m) ×
∏
q/∈S0

Uq)

∼= ((U ′(m) ∩ (u0(E′0)
∏

p∈S0

Wp,(m))) ×
∏
q/∈S0

1)k×(
∏

p∈S0

Vp,(m) ×
∏
q/∈S0

Uq)

/k×(
∏

p∈S0

Vp,(m) ×
∏
q/∈S0

Uq)

∼= (U ′(m) ∩ (u0(E′0)
∏

p∈S0

Wp,(m))) ×
∏
q/∈S0

1/(u0(E0)
∏

p∈S0

Vp,(m)) ×
∏
q/∈S0

1,
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Gal(M0,m/L0,m) ∼= k×(
∏

p∈S0

Vp,(m) ×
∏
q/∈S0

Uq)/k×(
∏

p∈S0

Up
m

p ×
∏
q/∈S0

Uq)

∼= ((u0(E0)
∏

p∈S0

Vp,(m)) ×
∏
q/∈S0

1)k×(
∏

p∈S0

Up
m

p ×
∏
q/∈S0

Uq)/k×(
∏

p∈S0

Up
m

p ×
∏
q/∈S0

Uq)

∼= ((u0(E0)
∏

p∈S0

Vp,(m)) ×
∏
q/∈S0

1)/((u0(E0)
∏

p∈S0

Up
m

p ) ×
∏
q/∈S0

1).

Since

Gal(L′0/K
′
0k∞) ∼= lim

←
Gal(L′0,m/K

′
0km),

Gal(L0/L
′
0K0) ∼= lim

←
Gal(L0,m/L

′
0,mK0) and

Gal(M0/L0) ∼= lim
←

Gal(M0,m/L0,m),

we obtain the isomorphisms(b)(d)(e). �
The following theorem is not needed in the following sections, but is inter-

esting because it gives a relation between capitulation of ideals and the Galois
groups I and D. See [G1] about a relation between Greenberg’s conjecture and
capitulation. Put H ′n,m = Ker(in,m : A′n → A′m) and Hn,m = Ker(in,m : An →
Am) where in,m is induced by the natural inclusion map kn ↪→ km.

Theorem 1. Let k be a totally real finite extension of Q and n a non-negative
integer. Assume that Leopoldt’s conjecture is valid for km(m ≥ n) and p. Then

[Mm : L′m] ≥ ♯H ′n,m · [Mn : L′n] and [Mm : Lm] ≥ ♯Hn,m · [Mn : Ln],
In particular if H ′n,m ̸= 0 for some m ≥ n, then the group D = Gal(M/L′) is
not trivial.

Proof. We have the following commutative diagram with exact rows and columns.
0x
Nx

0 −−−−→ Gal(Mm/K
′
mk∞) −−−−→ Gal(Mm/k∞) −−−−→ A′m −−−−→ 0

×νn,m
x ×νn,m

x in,m

x
0 −−−−→ Gal(Mn/K

′
nk∞) −−−−→ Gal(Mn/k∞) −−−−→ A′n −−−−→ 0x x x

0 0 H ′n,m
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where νn,m = ωm/ωn = ((1 + T )p
m − 1)/((1 + T )p

n − 1). Commutativity is
nothing but [I4,Theorem 8]. The columns are exact by class field theory(cf.
Proposition 1(a)). To show the rows are exact, we need the assumption. Since
km is totally real, Leopoldt’s conjecture for km and p implies that [Mm : k∞]
is finite(see [I4,Theorem 2]). Hence ωm and char(Gal(M/k∞)) are relatively
prime. On the other hand, Gal(M/k∞) has no non-trivial finite Λ-submodule
(see [I4,Theorem 18]) and Gal(Mn/k∞) = Gal(M/k∞)/ωn Gal(M/k∞). Using
these facts, we easily see that the rows are exact. Applying the snake lemma to
the above diagram, we have an exact sequence:

0 → H ′n,m → N.

By the below lemma, we have [L′m : K ′mk∞] ≤ [L′n : K ′nk∞]. Therefore

[Mm : L′m] =
[Mm : K ′mk∞]
[L′m : K ′mk∞]

≥ [Mn : K ′nk∞] · ♯N
[L′n : K ′nk∞]

≥ [Mn : L′n] · ♯H ′n,m.

The second inequality can be proved in a similar way. �
Lemma 1. Let the situation be the same as in Theorem 1. Then
[L′m : K ′mk∞] ≤ [L′n : K ′nk∞] and [Lm : Kmk∞] ≤ [Ln : Knk∞].

Proof. Let Upn ↪→ Upm be the natural inclusion map. Then

Upn ↪→ Upm
Norm→ Upn

is a multiplication by pm−n. Put k∞,p∞ = ∪l≥0kl,pl for brevity. By local class
field theory, we have the following commutative diagram.

Gal(k∞,p∞/kn,pn) ∼= Upn/Vpn

×pm−n ↓ ↓
Gal(k∞,p∞/km,pm)∼= Upm/Vpm .

Therefore i′n,m : Un/Vn → Um/Vm induced by the above maps is an isomor-
phism. By Proposition 1(b) and E′n ⊆ E′m, we have the first inequality. The
second inequality can be proved in a similar way. �

§2 Some propositions concerning Λ.

Let O be the integer ring of a finite extension over the field Qp of p-adic
numbers. In this section we give some propositions concerning Λ = O[[T ]] which
are required in the following sections. Some of them seem to be known, but we
bring them up here for convenience. Let π be a generator of the maximal ideal
of O and P = (π, T ) the unique maximal ideal of Λ. The following proposition
is known as Hensel’s Lemma.
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Proposition 2. For f(T ) ∈ Λ, assume that there exist g0(T ), h0(T ) ∈ Λ such
that

f(T ) ≡ g0(T )h0(T )mod P e+m and (g0(T ), h0(T )) ⊇ P e

for m ≥ e+ 1 ≥ 1. Then there exist g(T ), h(T ) ∈ Λ such that

f(T ) = g(T )h(T ), g(T ) ≡ g0(T )mod Pm and h(T ) ≡ h0(T )mod Pm.

When we use this proposition, it is convenient to know that (g0(T ), h0(T )) ⊇
P e if (g0(T ), h0(T ), P e+1) ⊇ P e. In general for a finitely generated Λ-module L
and its submodule L′, we have L′ ⊇ P eL if (L′, P e+1L) ⊇ P eL by Nakayama’s
Lemma((L′ + P eL)/L′ = P ((L′ + P eL)/L′), see [W,Lemma 13.16]).

For f(T ) =
∑∞
j=0 ajT

j ∈ Λ \ (π), by p-adic Weierstrass preparation theorem,
we can uniquely write f(T ) = P (T )U(T ), where P (T ) is a distinguished, irre-
ducible polynomial in O[T ] and U(T ) ∈ Λ×. Put λ(f(T )) = min{j | aj /∈ (π)},
then we have λ(f(T )) = deg(P (T )).

Proposition 3. For f1(T ), f2(T ) ∈ Λ \ (π), write f1(T ) = P1(T )U1(T ) and
f2(T ) = P2(T )U2(T ), where P1(T ) and P2(T ) are distinguished polynomials and
U1(T ), U2(T ) ∈ Λ×. Assume that{

λ(f1(T )) = λ(f2(T )) = n ≥ 1, f1(T ), f2(T ) ∈ P l for l ≥ 1

f1(T ) ≡ f2(T )mod P kn+1 for k ≥ 1.

Then P1(T ) ≡ P2(T )mod P k+l.

Proof. Let fi =
∑∞
j=0 ai,jT

j and put Ri =
∑n−1
j=0 (ai,j/π)T j ∈ O[T ] and Vi =∑∞

j=0 ai,j+nT
j ∈ Λ× (i = 1, 2). We define an operation τ = τn : Λ → Λ by

τ(
∑∞
j=0 bjT

j) =
∑∞
j=n bjT

j−n. Then we have

U−1
i =

1
Vi

∞∑
j=0

(−1)jπj(τ · Ri
Vi

)j · 1.

Here, for h ∈ Λ, τ ·h operates on f ∈ Λ by (τ ·h)·f = τ(hf). (See [W,Proposition
7.2] and its proof. Under the notations there, we get the above formula from
the last one of [W,page 114] by taking f = fi and g = Pi.) We have R1 ≡
R2 mod P kn, V −1

1 ≡ V −1
2 mod P kn+1−n and τ(Pm) = Pm−n for m ≥ n. Since

πjτ j(P kn+1−n) ⊆ P (n−1)(k−1−j)+k for 1 ≤ j ≤ k − 1,

U−1
1 ≡ U−1

2 mod P k. Therefore we have

P1 − P2 = f1(U−1
1 − U−1

2 ) + (f1 − f2)U−1
2 ≡ 0mod P k+l. �
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For a finitely generated Λ-torsion Λ-module N , there is a Λ-homomorphism:

N →
r⊕
j=1

Λ/(πµj ) ⊕
l⊕
i=1

Λ/(fi(T )ni)

whose kernel and cokernel are finite, where µj and ni are non-negative integers
and fi(T ) a distinguished, irreducible polynomial in O[T ] (see, for example,
[W,Ch13]). Put

char(N) =
r∏
j=1

πµj
l∏
i=1

fi(T )ni .

For a power series f(T ) ∈ Λ, let Mf(T ) be the set of Λ-isomorphism classes of
finitely generated Λ-torsion Λ-modules N such that{ (char(N)) = (f(T ))

N has no non-trivial finite Λ-submodule.

For f(T ) ∈ Λ \ (0), we say f(T ) is square-free when there is no element g(T ) ∈
Λ \ Λ× such that f(T )/g(T )2 ∈ Λ. Further, we say f(T ) is irreducible when
there is no element g(T ) ∈ Λ \ Λ× such that f(T )/g(T ) ∈ Λ \ Λ×.

Theorem 2. For f(T ) ∈ Λ \ (π), Mf(T ) is a finite set if and only if f(T ) is
square-free.

Proof. {Necessity} Write f = h2
∏l
i=1 gi, where h, gi ∈ Λ \ Λ× are irreducible

elements. For k ≥ 0, let Nk be the submodule (πk, h)/(h2) of Λ/(h2). The
isomorphism class of Nk is contained in Mh2 . Since πk /∈ (πk+1, h),

[Ker(×h : Nk → Nk) : Im(×h : Nk → Nk)]

= [Λ/(h) : (πk, h)/(h)] = [Λ : (πk, h)]

is strictly monotonically increasing for k. Therefore Nk is not isomorphic to Nk′
if k ̸= k′. Consider submodules Nk⊕

⊕l
i=1 Λ/(gi) of Λ/(h2)⊕

⊕l
i=1 Λ/(gi). Any

two of them are not isomorphic.
{Sufficiency} Step 1: We first prove that Mg is a finite set when g is an

irreducible element of Λ. Put n = λ(g). For every element [N ] ∈ Mg, fix a map:

ϕN : N ↪→ Λ/(g)

such that ϕN (N) is not included in (π, g)/(g). Then ϕN (N) contains an element∑n−1
j=0 aN,jT

j mod g where aN,j ∈ O and aN,n−1 /∈ (π). We may write

g = (
n−1∑
j=0

aN,jT
j)qN + rN
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for qN , rN ∈ Λ with λ(qN ) = 1 and λ(rN ) ≤ n− 2. Assume that for any k there
exists an element [Nk] in Mg such that πk divides rNk . Then we have a subse-
quence of {(

∑n−1
j=0 aNk,jT

j , qNk)} which converges to (Q,R) ∈ (Λ\Λ×)×(Λ\Λ×).
Since rNk → 0 as k → ∞, g = QR. This contradicts the above assumption.
Hence there exists a non-negative integer c such that c is independent of the
choice of N and that πc+1 does not divide rN . Therefore (rN mod g)(⊆ ϕN (N))
contains an element πc

∑n−2
j=0 bN,jT

j mod g where bN,j ∈ O and bN,n−2 /∈ (π).
Next write

πcg = πc(
n−2∑
j=0

bN,jT
j)q′N + πcr′N ,

for q′N , r
′
N ∈ Λ with λ(q′N ) = 2 and λ(r′N ) ≤ n − 3. By the irreducibility of

g we can show that (πcr′N mod g) contains an element πc
′ ∑n−3

j=0 cN,jT
j mod g

where cN,j ∈ O, cN,n−3 /∈ (π) and c′ is independent of the choice of N . By
continuing this argument, we can show that ϕN (N) contains πc” mod g where c”
is independent of the choice of N . Therefore Mg is a finite set, in fact

♯Mg ≤ ♯{Λ-submodules of a finite Λ-module Λ/(g, πc”)}.

Step 2: Let f =
∏l
i=1 fi, where fi is an irreducible element of Λ. If f is

square-free, fi and fj are relatively prime for i ̸= j. Let L =
⊕l

i=1 Λ/(fi) and

Pri : L→ L x1 ⊕ ...xi−1 ⊕ xi ⊕ xi+1...⊕ xl 7→ 0 ⊕ ...0 ⊕ xi ⊕ 0...⊕ 0.

For every [N ] ∈ Mf , fix a map

ϕN : N ↪→ L such that Pri(ϕN (N)) ̸⊆ (π, fi)L for all i.

By step 1, Pri(ϕN (N)) includes Li which is independent of N and is of finite
index in 0⊕ ...0⊕Λ/(fi)⊕0...⊕0. Since

∏l
j=1,j ̸=i fj and fi are relatively prime,∑l

i=1(
∏l
j=1,j ̸=i fj)Li is of finite index in L. Here ϕN (N) includes a submodule∑l

i=1(
∏l
j=1,j ̸=i fj)Li of L, which proves “if part” of this theorem. �

For Λ/(ωn)-modules A ⊇ B and C ⊇ D, we say (A,B) is Λ/(ωn)- isomorphic
to (C,D) when there exists a Λ/(ωn)-isomorphism from A to C which maps B
onto D. We denote the Λ/(ωn)-isomorphism class of (A,B) by [A,B]n.

Fix a power series f(T ) ∈ Λ \ (π). For [N ] ∈ Mf(T ), put NN = {N ′ | N ′ ⊂
N with char(N ′) ̸= char(N)}. For a non-negative integer n, define

Lf(T ),n = {[N/ωnN, (N ′ + ωnN)/ωnN ]n | [N ] ∈Mf(T ), N
′ ∈ NN}.

In Proposition 4, we assert that Lf∗(T ),n = Lf(T ),n if f(T ) is square-free and
f∗(T ) is sufficiently “close” to f(T ). Here we define the “closeness” as follows.
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If there exists u∗(T ) ∈ Λ× such that f∗(T )u∗(T ) ≡ f(T )modPm, then we write
(f∗(T )) ≡ (f(T ))modPm. Moreover define

m(f(T ), n) = min{m | Lf(T ),n = Lf∗(T ),n for all f∗(T ) ∈ Λ

with (f∗(T )) ≡ (f(T ))modPm}.

By putting P∞ = 0, we have 0 ≤ m(f(T ), n) ≤ ∞. From the definition of
m(f(T ), n), it is easily shown that

m(f∗(T ), n) = m(f(T ), n), if (f∗(T )) ≡ (f(T ))modPm(f(T ),n).

From now on, assume that f(T ) is square-free. Before giving Proposition 4, we
show that a factorization of f∗(T ) is similar to that of f(T ) if f∗(T ) is sufficiently
“close” to f(T ). We fix a factorization of f(T ) in Λ: f(T ) =

∏l
i=1 fi(T ) where

fi(T ) ∈ Λ \ Λ× is irreducible.
For f(T ) and a non-negative integer m, define

mf(T )(m) = min{m′ | m′ satisfies the property(A)}

(A)


if (f∗(T )) ≡ (f(T ))modPm

′
, then there exist f∗i (T ) ∈ Λ (1 ≤ i ≤ l)

satisfying (f∗i (T )) ≡ (fi(T ))modPm and f∗(T ) =
l∏
i=1

f∗i (T ).

By using Proposition 2 repeatedly, we can show that there exists an integer m′

satisfying the above and hence mf(T )(m) <∞. It is easy to see that mf(T )(m)
is independent of the choice of the factorization.

Further we want f∗i (T ) to be irreducible for all i. For an irreducible element
g(T ) ∈ Λ \ (π), define

m0(g(T )) = min{m′ | m′ satisfies the property(B)}

(B) if (g∗(T )) ≡ (g(T ))modPm
′
then g∗(T ) is irreducible.

Since Λ is compact, there exists such an integer m′ and m0(g(T )) < ∞. We
easily see that m0(g(T )) > λ(g(T )).

Put ei,j = min{e” | (fi(T ), fj(T )) ⊇ P e”}, e = maxi<j{ei,j} and M =
max1≤i≤l{m0(fi(T )), e + 1}. Assume that (f∗(T )) ≡ (f(T ))modPmf(T )(M).
Then there exist f∗i (T ) ∈ Λ(1 ≤ i ≤ l) such that

f∗i (T ) is irreducible in Λ, f∗(T ) =
l∏
i=1

f∗i (T )

(f∗i (T ), f∗j (T )) ⊇ P e for i < j, λ(f∗i (T )) = λ(fi(T )).
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From the first three properties, f∗(T ) is square-free. Put

W =
l⊕
i=1

Λ, F = (0 ⊕ ...0 ⊕ fi(T ) ⊕ 0...⊕ 0)1≤i≤l,

F ∗ = (0 ⊕ ...0 ⊕ f∗i (T ) ⊕ 0...⊕ 0)1≤i≤l.

Let Pr′i : W →W be the map defined by

x1 ⊕ ...xi−1 ⊕ xi ⊕ xi+1...⊕ xl 7→ 0 ⊕ ...0 ⊕ xi ⊕ 0...⊕ 0.

We define a finite set of some submodules of W associated to f(T ). In the proof
of Theorem 2(sufficiency), we show that there exists a non-negative integer c”
such that P c”W ⊆ Z+F for all submodule Z of W with Pr′iZ ̸⊆ (fi(T ), π)W for
all i. Let c = c(f(T )) be the minimum integer c” satisfying the above. Define

Z = Z(f(T )) = {Z ⊆W | Z ⊇ P cW, Pr′i(Z) ̸⊆ (π, fi(T ))W for all i}.

Proposition 4. Let f(T ) be a square-free power series in Λ \ (π).
(a)If (f∗(T )) ≡ (f(T ))modPmf(T )(max{c+1,M}), then for any [N∗] ∈ Mf∗(T ),
there exists an element Z ∈ Z such that N∗ ∼= (Z + F ∗)/F ∗. In particular
{♯Mf∗(T ) | (f∗(T )) ≡ (f(T ))modPmf(T )(max{c+1,M})} is bounded.
(b)Assume that ωn and f(T ) are relatively prime. Then there exist some integers
m1,n and m2,n(≥ max{c+ 1,M}) such that

ωnZ + F ∗ ⊇ Pm1,nW if (f(T )) ≡ (f∗(T ))modPmf(T )(m2,n)

for any Z ∈ Z. Moreover the following inequality holds

m(f(T ), n) ≤ mf(T )(max{m1,n,m2,n}).

Proof. (a) Assume that (f∗) ≡ (f)modPmf (M). For each [N∗] ∈ Mf∗ , fix a
map

ϕN∗ : N∗ ↪→ L∗ =
l⊕
i=1

Λ/(f∗i ) such that Pri(ϕN∗(N∗)) ̸⊆ (π, f∗i )L∗ for all i.

Moreover we choose a Λ-submodule ZN∗ of W satisfying

ϕN∗(N∗) = (ZN∗ + F ∗)/F ∗.

Since Pr′i(ZN∗) ̸⊆ (π, f∗i )W = (π, fi)W for all i, ZN∗ + F ⊇ P cW . If (fi) ≡
(f∗i )modP c+1 for all i, ZN∗ +F ∗+P c+1W ⊇ ZN∗ +F ⊇ P cW . By Nakayama’s
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lemma, this implies ZN∗ + F ∗ ⊇ P cW . Hence, for any N∗, we can choose ZN∗

so that ZN∗ ⊇ P cW and Pr′i(ZN∗) ̸⊆ (π, fi)W for all i. Since Z is a finite set,
(a) follows.

(b): First note that

ωnZ + F ∗ ⊇
l∑
i=1

0 ⊕ ...0 ⊕ (ωnP c, f∗i ) ⊕ 0...⊕ 0

and that (ωnP c, f∗i ) ⊇ P c(ωn, f∗i ). Since fi and ωn are relatively prime, we can
take integers m1,n = m1,n(f) and m2,n = m2,n(f)(≥ max{c+ 1,M}) such that

ωnZ + F ∗ ⊇ Pm1,nW if (fi) ≡ (f∗i )modPm2,n

for any Z ∈ Z. This shows the first assertion. Next, let us prove Lf∗,n = Lf,n.
Put m′ = max{m1,n,m2,n} and assume that (fi) ≡ (f∗i )modPm

′
for all i. Let

[N∗] be any element of Mf∗ and N” any element of NN∗ . Then, by (a), there
is an element Z ∈ Z such that N∗ ∼= (Z + F ∗)/F ∗. Put N = (Z + F )/F . Then
[N ] ∈ Mf . We easily see that there is a submodule Z” of Z + F ∗ such that

N” ∼= (Z” + F ∗)/F ∗, Pr′i(Z”) ⊆ f∗i W for some i.

Fix i such that Pr′i(Z”) ⊆ f∗i W . Let ιi be the isomorphism

ιi : (f∗i ) → (fi) xf∗i 7→ xfi.

Define a Λ-submodule Z ′ of W by

Z ′ = {x1 ⊕ ...xi−1 ⊕ ιi(xi) ⊕ xi+1...⊕ xl | x1 ⊕ ...xi−1 ⊕ xi ⊕ xi+1...⊕ xl ∈ Z”}.

Put N ′ = (Z ′ + F )/F . Then, as Pr′i(Z
′) ⊆ fiW , N ′ ∈ NN . Now let us prove

[N∗/ωnN∗, N” + ωnN
∗/ωnN

∗]n = [N/ωnN,N ′ + ωnN/ωnN ]n. We have

(Z + F ∗)/(ωnZ + F ∗) = (Z + F ∗ + Pm1,nW )/(ωnZ + F ∗ + Pm1,nW )

= (Z + F + Pm1,nW )/(ωnZ + F + Pm1,nW )

= (Z + F )/(ωnZ + F ).

On the other hand, we have

(Z” + ωnZ + F ∗)/(ωnZ + F ∗) = (Z ′ + ωnZ + F )/(ωnZ + F ).

Therefore Lf∗,n ⊆ Lf,n. Similarly we can show that Lf∗,n ⊇ Lf,n. �
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Remark 1. Here we give an upper bound for m(f(T ), n). Put

ei = min{e” | (
l∏

j=i+1

fj(T ), fi(T )) ⊇ P e”}, e′ = max{ei | 1 ≤ i ≤ l − 1}.

Then max{m1,n,m2,n, e
′+1}+(

∑l−1
j=i ej)− ei ≥ ei+1 for 1 ≤ i ≤ l− 1(if l = 1,

put e′ = 0). Hence we have

m(f(T ), n) ≤ mf(T )(max{m1,n,m2,n}) ≤ max{m1,n,m2,n, e
′ + 1} +

l−1∑
i=1

ei

by using Proposition 2 repeatedly.

For a power series f(T ) ∈ Λ \ (π) and [N ] ∈ Mf(T ), define

n(f(T ), N) = min{n | n satisfies the property(C)}

(C) N/ωnN ̸∼= N ′/ωnN
′ for all [N ′] ∈ Mf(T ) with [N ′] ̸= [N ].

Put n(f(T )) = max{n(f(T ), N) | [N ] ∈ Mf(T )} By putting ω∞ = 0, we have
0 ≤ n(f(T ), N) ≤ n(f(T )) ≤ ∞.

Proposition 5. Assume that f(T ) ∈ Λ \ (π) is square-free. Then n(f(T )) is
finite.

Proof. Assume that for [N ], [N ′] ∈ Mf and all n there exist isomorphisms ϕn :
N/ωnN

∼→ N ′/ωnN
′. Let N = (n1, n2, ..., nt). Since N ′ is compact, there

exist n′1, ..., n
′
t ∈ N ′ which satisfy the following property: for any n there exists

some integer m ≥ n − 1 such that ϕm(ni) ≡ n′i mod(p, T )nN ′. Then the map
ϕ : N → N ′ (ϕ(ni) = n′i) is a Λ-isomorphism. Therefore if N ̸∼= N ′, then there
exists some integer n such that N/ωnN ̸∼= N ′/ωnN

′. By Theorem 2 we can
show that n(f) is finite. �

§3 A necessary and sufficient condition.

In this section we give a necessary and sufficient condition for Greenberg’s
conjecture in terms of Λ-module structures of certain Galois groups. Let k be a
totally real number field and p an odd prime number. We use the same notation
as in the preceding sections. Put Λ = Zp[[T ]].
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Proposition 6. Assume that every prime ideal of k above p is fully ramified
in k∞ and that Leopoldt’s conjecture is true for k and p. Then the following
statements are equivalent.

(1)Y/I is finite.

(2) char(Y ) = char(D).

This proposition is easily obtained by the following lemma.

Lemma 2. Let the situation be the same as in Proposition 6. Then D/I is
finite.

Proof. We have D/I ∼= lim←Dn, where the projective limit is taken with respect
to relative norms. Leopoldt’s conjecture implies that the order of the maximal
Γ-invariant submodule AΓ

n of An is bounded as n→ ∞ (see [G1,Proposition 1]).
Since Dn ⊆ AΓ

n, the assertion follows. �
The following theorem and Proposition 6 give a necessary and sufficient con-

dition for Greenberg’s conjecture for k and p.

Theorem 3. Assume that p does not divide char(Y ). Then char(D) = char(Y )
if and only if there exist a non-negative integer n and a power series f∗(T ) ∈
Λ \ (π) satisfying (1) and (2):

(1) (f∗(T )) ≡ (char(Y )) modPm(f∗(T ),n)

(2) there is no pair (N∗, N”) with [N∗] ∈ Mf∗(T ), N” ∈ NN∗ such that

[Y/ωnY, (D + ωnY )/ωnY ]n = [N∗/ωnN∗, (N” + ωnN
∗)/ωnN∗]n.

Proof. By [I4,Theorem 18], Y has no non-trivial finite Λ-submodule if p ̸= 2.
Using this fact, we can prove this theorem.
{Necessity} Assume that char(D) = char(Y ) and that λ(f∗) = λ(char(Y )). For
any [N∗] ∈ Mf∗ and N” ∈ NN∗ , Zp-rank of N” is smaller than that of D. For
all sufficiently large n, Zp-rank of N”(resp. D) is equal to the minimum number
of generators of Zp-module (N”+ωnN

∗)/ωnN∗(resp. (D+ωnY )/ωnY ). There-
fore the necessity follows.
{Sufficiency} Assume that (f∗) ≡ (char(Y ))modPm(f∗,n). Then we have
m(f∗, n) = m(char(Y ), n). Therefore the sufficiency immediately follows from
the definition of m(char(Y ), n) �
Remark 2. As is easily seen, Y/ωnY ∼= Gal(Mn/k∞) and (D + ωnY )/ωnY ∼=
Gal(Mn/L

′
n). Hence, by class field theory, we can obtain knowledge on the iso-

morphism class [Y/ωnY, (D+ωnY )/ωnY ]n from some data of kn(cf. Proposition
1). Next, assume k is abelian. Then we can calculate char(Y )modPm for any
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m from the Stickelberger elements by virtue of the Iwasawa main conjecture.
Thus, we can obtain information on [N∗/ωnN∗, (N” + ωnN

∗)/ωnN∗]n. Fur-
ther we have an upper bound for m(char(Y ), n) when char(Y ) is square-free(see
Remark 1). For numerical calculations, see §4.

For an abelian field k, let Ψ be an irreducible character of ∆ = Gal(k/Q) over
Qp. If p does not divide [k : Q] we can replace Y , D by eΨY , eΨD respectively
in Theorem 3 where eΨ is the idempotent of Ψ, i.e. eΨ = ♯∆−1

∑
σ∈∆ Ψ(σ)σ−1.

We explicitly write down this condition in some cases.
Since we assume that p ̸= 2 and that p does not divide char(Y ), there exists

an injective Λ-homomorphism with finite cokernel:

Y ↪→
l⊕
i=1

Λ/(fi(T )ni),

where ni is a positive integer and fi(T ) a distinguished, irreducible polynomial
in Zp[T ]. Then char(Y ) =

∏l
i=1 fi(T )ni .

{Case 0:Y/D is trivial.}
This is known as a trivial case(cf. [FK]).

Proposition 7. Assume that Y/(D + ω0Y ) = 0, then Y = D. In particular
char(D) = char(Y ).

Proof. In this case, we have (Y/D)/ω0(Y/D) = 0. This implies that (Y/D)/(p, T )(Y/D)
is trivial. By Nakayama’s Lemma, we have Y/D = 0. �

{Case 1:char(Y ) is distinguished, irreducible in Zp[T ].}
l = 1 and n1 = 1.

Proposition 8. For any irreducible power series f(T ) ∈ Λ \ (π), and [N ] ∈
Mf(T ), NN = {(0)}.

Proof. Since N has no non-trivial finite Λ-submodule, this proposition immedi-
ately follows. �
Theorem 3(case 1). Assume that p dose not divide char(Y ). Then char(D) =
char(Y ) if and only if there exist a non-negative integer n and a power series
f∗(T ) ∈ Λ \ (π) satisfying (1) and (2):

(1) (f∗(T )) ≡ (char(Y )) modPm(f∗(T ),n)

(2) (D + ωnY )/ωnY ̸= 0.

Proof. By Proposition 8 and Theorem 3, the assertion easily follows. �
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Remark 3. In this case we need not study a pair (Y,D) to give a necessary and
sufficient condition. Hence we can replace m(f∗(T ), n) by m0(f∗(T )) i.e. all we
have to know is the irreducibility of char(Y ). In [K] and [OT], they explicitly
give some procedures to check the non-triviality of Gal(M0/L

′
0) in some case.

Let l = 1, f1(T ) = T − a, a ∈ pZp (a ̸= 0) and n1 = 1. Put α = vp(a), where
vp is the normalized p-adic valuation.

Proposition 9. MT−a = {[N ] | N = Λ/(T − a)},NN = {(0)}, n(T − a) = 0
and m(T − a, n) = max{ α+ n, α+ 1}.

Proof. We prove that m(T − a, n) = max{ α + n, α + 1}(the other assertions
can be easily proved). If (f∗) ≡ (T − a)modP 2 then f∗ = (T − a∗)u∗ for some
u∗ ∈ Λ× and a∗ ∈ pZp. By Proposition 3 if (f∗) ≡ (T − a)modPα+1, T − a ≡
T − a∗modPα+1. Note that vp(ωn(a)) = α + n, where ωn(a) = (1 + a)p

n − 1.
Hence if (T −a) ≡ (T −a∗)modPα+1, then (T −a∗, ωn) ⊇ Pα+n. We easily see
that max{c+ 1,M} ≤ max{α+ 1, 2} = α+ 1. Therefore

m(T − a, n) ≤ max{m1,n = α+ n,m2,n = α+ 1}

(see Remark 1). If n = 0, max{α + n, α + 1} = α + 1. Put f∗ = T and
N∗ = Λ/(f∗). Then f∗ ≡ T − amodPα. We can see N∗/ω0N

∗ ̸∼= N/ω0N . If
n ≥ 1, max{α+n, α+1} = α+n. Put f∗ = T −(a+pα+n−1) and N∗ = Λ/(f∗).
Then f∗ ≡ T − amodPα+n−1 and N∗/ωnN∗ is a cyclic group of order ≥ pα+n.
Since (T − a)(N∗/ωnN∗) is not trivial, N∗/ωnN∗ ̸∼= N/ωnN . �

{Case 2:char(Y ) is distinguished, square-free, reducible of degree 2.}
l = 2, f1(T ) = T − a, f2(T ) = T − b, a, b ∈ pZp (a ̸= b, ab ̸= 0) and

n1 = n2 = 1. Put α = vp(a), β = vp(b) and e = vp(a− b). Assume that α ≤ β.

Proposition 10. ♯M(T−a)(T−b) = e+ 1 and

M(T−a)(T−b) = {[Nk] | Nk = (1⊕1, 0⊕pk) ⊆ Λ/(T −a)⊕Λ/(T −b) 0 ≤ k ≤ e},

where c⊕ d = cmod(T − a) ⊕ dmod(T − b).

Proof. For [N ] ∈ M(T−a)(T−b), there exists an injective Λ-homomorphism: ϕN :
N → Λ/(T − a) ⊕ Λ/(T − b). Any element in Λ/(T − a) ⊕ Λ/(T − b) can be
expressed as c ⊕ d, where c, d ∈ Zp. Let m = min{i|pi ⊕ d ∈ ϕ(N)} and n =
min{i|0⊕pi ∈ ϕ(N)}. Then N is isomorphic to (pm⊕d, 0⊕pn) for some d ∈ Zp.
Since (T −a)(pm⊕d) = 0⊕ (b−a)d, N ∼= (pm⊕1, 0⊕pk) ∼= (1⊕1, 0⊕pk) = Nk,
where 0 ≤ k ≤ e. Since

[Ker(×(T − b) : Nk → Nk) : Im(×(T − a) : Nk → Nk)] = pe−k,

♯M(T−a)(T−b) = e+ 1. �
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Proposition 11. NNk = {(pi ⊕ 0), i ≥ k, (0 ⊕ pj), j ≥ k, (0 ⊕ 0)}.

Proof. If c ̸≡ 0mod(T − a) and d ̸≡ 0mod(T − b), then (c ⊕ d) /∈ NNk . Since
min{i | pi ⊕ 0 ∈ Nk} = k, the assertion follows. �

Proposition 12. n((T − a)(T − b)) = e− α.

Proof. For n = e− α,

Ker(×(T − b) : Nk/ωnNk → Nk/ωnNk) = (pk(1 ⊕ 1), 0 ⊕ pk)/ωnNk.

Since [Nk/ωnNk : Ker(×(T − b))] = pk, we have n((T − a)(T − b)) ≤ e− α. For
n = e− α− 1 ≥ 0,

ϕ : N0/ωnN0 → N1/ωnN1 1 ⊕ 1 7→ 1 ⊕ 1, 0 ⊕ 1 7→ 0 ⊕ p

is a Λ/(ωn)-isomorphism. (In this case α = β < e. Since ordp(ωn(a)− ωn(b)) =
e + n, we have ωn(a)(1 ⊕ 1) + (ωn(b) − ωn(a))(0 ⊕ p), ωn(b)(0 ⊕ p) ∈ ωnN1.
Hence ϕ is an isomorphism of abelian groups. Since T (1 ⊕ 1) − a(1 ⊕ 1) + (a−
b)(0 ⊕ p), T (0 ⊕ p) − b(0 ⊕ p) ∈ ωnN1. Hence ϕ is a Λ-isomorphism.) Therefore
n((T − a)(T − b)) = e− α. �

The following lemma is obtained by easy calculation.

Lemma 3. Let N ′ = (pi ⊕ 0) ∈ NNk . Then

Nk/(N ′ + ω0Nk) ∼=Z/pe−kZ ⊕ Z/piZ if e− α ≤ k, k ≤ i ≤ k + α+ β − e

∼=Z/pe−kZ ⊕ Z/pk+α+β−eZ if e− α ≤ k, i ≥ k + α+ β − e

∼=Z/pαZ ⊕ Z/p−k−α+e+iZ if e− α ≥ k, k ≤ i ≤ k + α+ β − e

∼=Z/pαZ ⊕ Z/pβZ if e− α ≥ k, i ≥ k + α+ β − e.

Let N ′ = (0 ⊕ pj) ∈ NNk . Then

Nk/(N ′ + ω0Nk) ∼=Z/pe−kZ ⊕ Z/pk+α−e+jZ if e− α ≤ k, k ≤ j ≤ β

∼=Z/pe−kZ ⊕ Z/pk+α+β−eZ if e− α ≤ k, j ≥ β

∼=Z/pαZ ⊕ Z/pjZ if e− α ≥ k, k ≤ j ≤ β

∼=Z/pαZ ⊕ Z/pβZ if e− α ≥ k, j ≥ β.
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Proposition 13. m((T − a)(T − b), n) ≤ 2e+ β + n.

Proof. If (T − a) ≡ (f∗1 ) modP e+1 and (T − b) ≡ (f∗2 )modP e+1, then λ(f∗1 ) =
λ(f∗2 ) = 1 and (f∗1 , f

∗
2 ) ⊇ P e. Put x = max{e + 1, β + 1}. If (T − a) ≡ (f∗1 ) =

(T − a∗)modP x and (T − b) ≡ (f∗2 ) = (T − b∗)modP x, then a∗ ≡ amod px,
b∗ ≡ bmod px and

(ωn(u1 ⊕ u2), ωn(0 ⊕ u3p
k), T − a∗ ⊕ 0, 0 ⊕ T − b∗) ⊇ P e+β+k(Λ⊕ Λ)

for any u1, u2, u3 ∈ Λ×. We easily see that max{c+1,M} ≤ max{ e+1, e+1} =
e+ 1. Since

max{m1,n = e+ β + n,m2,n = x} = e+ β + n,

m((T − a)(T − b), n) ≤ e+ (e+ β + n) = 2e+ β + n by Remark 1. �
Theorem 3(case 2). Assume that p does not divide char(Y ). Then char(D) =
char(Y ) if and only if there exist a non-negative integer n and a∗, b∗ ∈ pZp
(a∗ ̸= b∗, a∗b∗ ̸= 0) satisfying (1) and (2):

(1) ((T − a∗)(T − b∗)) ≡ (char(Y ))modPm((T−a∗)(T−b∗),n)

(2) there is no pair (N∗k , N”) with [N∗k ] ∈ M(T−a∗)(T−b∗), N” ∈ NN∗
k

such that

[Y/ωnY, (D + ωnY )/ωnY ]n = [N∗k/ωnN
∗
k , (N” + ωnN

∗
k )/ωnN∗k ]n.

§4 Numerical examples.

In this section we give numerical examples. We follow the notation of the
preceding sections.

Let k be a real quadratic field, p an odd prime number and ψ the non-
trivial primitive Dirichlet character which is associated to k. Let f0 be the
least common multiple of p and the conductor of ψ. We identify Gal(k∞/k)
with Gal(k(µp∞)/k(µp)), where µpn is the group of pn-th roots of unity and
µp∞ = ∪n≥0µpn . We take a topological generator γ0 of Gal(k∞/k) such
that ζγ0 = ζ1+f0 for all ζ ∈ µp∞ . Since there is no non-trivial abelian p-
extension of Q∞ unramified outside p, we have Y = Gal(M/k∞) = eψY ,
where eψ is the idempotent of ψ. On the other hand, there exists an ele-
ment Gψ(T ) ∈ Λ = Zp[[T ]] such that Lp(1 − s, ψ) = Gψ((1 + f0)s − 1) for
all s ∈ Zp(see [I3]). By p-adic Weierstrass preparation theorem, we can uniquely
express Gψ(T ) in the form pµψgψ(T )Uψ(T ), where µψ is a non-negative integer,
gψ(T ) a distinguished polynomial in Λ and Uψ(T ) ∈ Λ×. The Iwasawa main con-
jecture proved by Mazur-Wiles[MW] asserts char(eψY ) = pµψgψ(T ). Moreover
Ferrero-Washington[FW] proved µψ = 0.
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An “approximate” polynomial of Gψ(T ) is obtained in the following way. Let
ω be the Teichmüller character. Gψ(T ) satisfies the following congruence:

Gψ(T ) ≡ − 1
2f0pn

f0p
n∑

a=1,(a,f0)=1

aψω−1(a)(1 + Ṫ )−γn(a) mod((1 + Ṫ )p
n

− 1)

for n ≥ 0, where (1 + Ṫ )(1 + T ) = 1 + f0, (1 + f0)γn(a) ≡ za mod pn+1 for some
(p− 1)-th root of unity z ∈ Zp and 0 ≤ γn(a) < pn (see [I3,§6] and [G2]). Note
that (p, T )n+1 ⊃ ((1 + Ṫ )p

n − 1). For details about computation of Gψ(T ), see,
for example, [EM].

Let k = Q(
√
m) in which p = 3 splits, where m is a square-free integer(1 <

m < 104). The total number of such fields is exactly 2279.

Example 0-1. If deg(gψ(T )) = 0, we have M = L = k∞. Hence λ and ν
vanish. There are 1444 fields such that deg(gψ(T )) = 0 among 2279 fields.

Example 0-2. If L′0 = k∞, then we have L′ = k∞ by Proposition 7. Hence
λ = 0 by Proposition 6. Including those in Example 0-1, There are 1444+598
fields such that L′0 = k∞ among the above fields. Concerning ν-invariants of
those 598 fields, see [FK].

Example 1. If gψ(T ) is irreducible in Zp[T ] and [Mn : L′n] > 1, then we
have λ = 0 by Proposition 6 and Theorem 3(case 1). The index [Mn : L′n] is
computed in the following way. Assume that gψ(T ) is square-free. Then there
exists an injective map Y = Gal(M/k∞) ↪→ Z = Zp[T ]/(gψ(T )) with finite
cokernel. Hence we have [Mn : k∞] = ♯(Z/ωnZ) (see [CL,§4]). By Proposition
1(a)(b), ♯Gal(L′n/k∞) = ♯A′n ·♯(Un/VnE′n). We have seen in the proof of Lemma
1 that i′0,n : U0/V0 → Un/Vn(∼= Zp) is an isomorphism. Hence we see that
Un/Vn → (U0/V0)p

n

induced by the relative norm maps is an isomorphism.
Thus we have ♯(Un/VnE′n) = ♯(U0/V0Nkn/kE

′
n)/p

n. Therefore we have

[Mn : L′n] =
♯(Z/ωnZ) · pn

♯A′n · ♯(U0/V0Nkn/kE
′
n)
.

In [FT], they compute ♯A′n = ♯An/Dn and n
(n)
0 = vp(p · ♯(U0/V0Nkn/kE

′
n)) for

the above 2279 fields and n = 0, 1.
Let k = Q(

√
727), p = 3 and σ generate Gal(k/Q). By computation,

(Gψ(T )) ≡ (T 2 + 3T + 18) mod(p, T )3. Further we see that T 2 + 3T + 18 is
irreducible in Zp[T ] and m0(T 2 + 3T + 18) = 3. Therefore gψ(T ) is irreducible
in Zp[T ]. We get ♯Z/ω0Z = p2.

On the other hand, we have

A0 = 1, E0 = ⟨−1, ε = 728 + 27
√

727⟩, E′0 = ⟨−1, ε, 3, ε′ = 22 +
√

727⟩.



GREENBERG’S CONJECTURE AND THE IWASAWA POLYNOMIAL 21

p = (3, ε′σ) is a prime ideal and p5 = (ε′σ). Here since
√

727 ≡ 22(mod p4), ε is
a p -adic p2-th power but not p3-th power and ε′ is a p-adic p-th power but not
p2-th power.

From these data on E′0, we see that n(0)
0 = 2(see [FK] and [FT]). By these

facts, we have [M0 : L′0] = p. Therefore we have λ = 0 .
Here we explain how to obtain n

(0)
0 = 2 from these data for convenience of

readers. Since p splits in k, we have

U0 = {(u, u′) ∈ (1 + pZp)⊕2 | uu′ = 1} ∼= 1 + pZp,
V0 = {1},

W0 = {(ηpa, η′pb) | a, b ∈ Z, ηp−1 = η′
p−1 = 1}.

Here we fix a topological generator x of U0. By the above data,

u0(ε) = xp
2u and u0(ε′) = xpu

′
(1, p5)

for some u, u′ ∈ Z×p . Hence E′0 = U0 ∩ (u0(E′0)W0) = ⟨xp⟩. Therefore we have

♯U0/V0E′0 = p and n(0)
0 = 2.

In a similar way, we can show that the conjecture is true for m = 2794, 4279,
4741, 5533, 7429, 7465, 7642, 9691. For these quadratic fields, the conjecture
was not verified in [FT].

Example 2. Let us deal with the case gψ is reducible. Here we give an example
of case 2.

Let k = Q(
√

9634), p = 3 and σ generate Gal(k/Q). By computation,
(Gψ(T )) ≡ ((T−66)(T−27)) mod(p, T )5. Hence we have gψ(T ) = (T−a)(T−b)
(a, b ∈ pZp), e = 1, α = 1 and β = 3 by Proposition 2 and Proposition 3. Put
f∗(T ) = (T − 66)(T − 27). Moreover we have m(f∗(T ), 0) = m(gψ(T ), 0) ≤ 5 by
Proposition 13. This implies that Lchar(Y ),0 = Lf∗(T ),0.

On the other hand, we have

A0 = D0
∼= Z/pZ, E0 = ⟨−1, ε = 8343 + 85

√
9634⟩

E′0 = ⟨−1, ε, 3, ε′ = 2252785 + 22304
√

9634⟩.

p = (3, ε′σ) is a prime ideal and p24 = (ε′σ). Here since
√

9634 ≡ 20(mod p5), ε
is a p-adic p3-th power but not p4-th power and ε′ is a p-adic p2-th power but
not p3-th power.

From these data, we obtain E0 = ⟨xp3⟩ and E′0 = ⟨xp2⟩ in a similar way as
in Example 1. First, by Proposition 1(a)(b), Gal(L′0/k∞) = Gal(L′0/K

′
0k∞) ∼=

U0/V0E′0
∼= Z/p2Z. Next, let us compute Gal(M0/L

′
0). By Proposition 1(e)
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and V0 = {1}, we have M0 = L0. On the other hand, Gal(L/L′) is a cyclic Zp-
module, since pnp

σ
n is principal for all n. Thus it suffices to know ♯Gal(L0/K0L

′
0)

and ♯Gal(K0L
′
0/L

′
0). As E′0/E0

∼= Z/pZ, ♯Gal(L0/K0L
′
0) = p by Proposition

1(d). By D0
∼= Z/pZ and Proposition 1(c), we get ♯Gal(K0L

′
0/L

′
0) = p. There-

fore we obtain Gal(M0/L
′
0) ∼= Z/p2Z. As A0 = D0, we see that L′0∩K0k∞ = k∞.

Hence Gal(M0/k∞) is not a cyclic Zp-module. By Proposition 10(e = 1), Mf∗(T )

has two elements [N∗0 ] and [N∗1 ]. Now we prove char(D) = char(Y ). By Theorem
3(case 2), all we have to do is to show that there is no element N” ∈ NN∗

k
such

that [Y/ω0Y, (D+ω0Y )/ω0Y ]0 = [N∗k/ω0N
∗
k , (N” +ω0N

∗
k )/ω0N

∗
k ]0 for k = 0, 1.

Proposition 11 gives us all elements of NN∗
k
. Then, using Lemma 3, we have no

element N” ∈ NN∗
0

such that (N” + ω0N
∗
0 )/ω0N

∗
0
∼= Gal(M0/L

′
0) ∼= Z/p2Z and

that N∗0 /(N” + ω0N
∗
0 ) ∼= Gal(L′0/k∞) ∼= Z/p2Z. On the other hand, N∗1 /ω0N

∗
1

is a cyclic Zp-module, but Y/ω0Y = Gal(M0/k∞) is not cyclic. Therefore the
above assertion follows.

Of course, we can show char(D) = char(Y ) by directly studying [Y/ω0Y, (D+
ω0Y )/ω0Y ]0. In the above case, we have the following isomorphisms by class
field theory(cf. Proposition 1).

Y/ω0Y ∼= Z/pZ ⊕ Z/p3Z∪
|

∪
|

(D + ω0Y )/ω0Y ∼= (1 ⊕ p).

Using this fact, we can show that D ̸∈ NY by Theorem 3(case 2) and Proposition
11.

In the following tables, we write the number of quadratic fields satisfying
conditions concerning (1) deg(gψ(T )), (2)reducibility of gψ(T ), (3) M0 and L′0,
(4) L′0 and k∞ among 2279 fields. For example, 430(393) in Table 1 means that
there are 430 fields which satisfy the following conditions (1)(2)(3) and that 393
fields satisfy (4) further. (1)deg(gψ(T )) = 1. (2)gψ(T ) is irreducible in Zp[T ].
(3)M0 ) L′0. (4)L′0 = k∞.

Table 1: The number of quadratic fields (n = 0)

Irred. polyn. Red. polyn.
deg(gψ(T )) M0 ) L′0(= k∞) M0 = L′0 M0 ) L′0 M0 = L′0

1 430(393) 119 0 0
2 146(130) 41 17(14) 0
3 29(28) 9 15(11) 2
4 12(12) 3 5(3) 0

≥ 5 5(5) 0 2(2) 0

Table 2: The number of quadratic fields (n = 1)
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Irred. polyn. Red. polyn.
deg(gψ(T )) M1 ) L′1 M1 = L′1 M1 ) L′1 M1 = L′1

1 517 32 0 0
2 185 2 17 0
3 37 1 17 0
4 15 0 5 0

≥ 5 5 0 2 0

By Table 1, Example 0 and Example 2 Greenberg’s conjecture is true for
at least 2097 = 1444 + 430 + 146 + 29 + 12 + 5 + 14 + 11 + 3 + 2 + 1 fields
among 2279 fields. Moreover, by Table 2, the conjecture is true for at least
2234 = 1444+517+185+37+15+5+14+11+3+2+1 fields. Further in [FT]
the conjecture is verified for Q(

√
2659) and Q(

√
8374) which are not contained

in 2234 fields above.
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