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Abstract

Let p be an odd prime number and O the integer ring of a finite
extension of Qp. We determine isomorphism classes of certain O[[T ]]-
modules which are isomorphic to O⊕3 as O-modules. Moreover we
give some examples which are not isomorphic to their adjoints.

1 Results

Let p be an odd prime number and K a finite extension of the field Qp of p-
adic integers. We denote by O the integer ring of K and fix a prime element
π of O. Put Λ = O[[T ]] the ring of one variable formal power series over O.

Let M be a finitely generated torsion Λ-module. By Iwasawa’s structure
theorem (cf. Chapter 13 of [5]), there is a Λ-homomorphism

φ :M →
l⊕

i=1

Λ/(fi(T ))⊕
m⊕
j=1

Λ/(πµj)

with finite kernel and co-kernel, where l, m, µj ∈ Z≥0 and fi(T ) ∈ O[T ] is a

distinguished polynomial. Put char(M) =
l∏

i=1

fi(T )
m∏
j=1

πµj .
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For a distinguished polynomial f(T ) ∈ O[T ], we define

Mf(T ) =

{
Λ-isomorphism class of M

∣∣∣∣ char(M) = f(T ) and M has no
non-trivial finite Λ-submodule

}
.

For all isomorphism classes [M ] ∈ Mf(T ), we easily see that Ker φ = 0
and that M ∼= O⊕deg f(T ) as O-modules. In [3] and [4], all elements of Mf(T )

are determined for all distinguished polynomials f(T ) with deg f(T ) ≤ 2.
Further it is shown that [M ] = [α(M)] for all [M ] ∈ Mf(T ) if deg f(T ) ≤ 2,
where

α(M) = lim
←

HomO(M/πnM,K/O)

and (Ty)(x) = y(Tx) for y ∈ HomO(M/πnM,K/O) and x ∈ M/πnM .
Concerning adjoints, see [1] and [2].

In this note, we determine all elements of Mf(T ) and their adjoints for
f(T ) = (T − α1)(T − α2)(T − α3), α1, α2, α3 ∈ (π), α1 ̸≡ α2 mod (π2),
α2 ̸≡ α3 mod (π2) and α3 ̸≡ α1 mod (π2). Put

E = Λ/(T − α1)⊕ Λ/(T − α2)⊕ Λ/(T − α3).

Denote by [i, j, a] the isomorphism class of the following Λ-submodule of E:

⟨(1, 1, 1), (0, πi, a), (0, 0, πj)⟩.

Theorem 1. Let f(T ) be as above. Put u =
α3 − α1

α2 − α1

∈ O×. The cardinality

of Mf(T ) is seven. Moreover

Mf(T ) = {[0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 2, uπ], [1, 1, 0], [0, 1, 2]}.

Theorem 2. Let f(T ) be as above. If [M ] ∈ Mf(T ) is not [1, 1, 0] nor
[0, 1, 2], then

[M ] = [α(M)].

On the other hand, for [M1] = [1, 1, 0] and [M2] = [0, 1, 2],

[α(M1)] = [M2] and [α(M2)] = [M1].

2 Proofs

In this section, the setting is the same as in Theorem 1 and Theorem 2.
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2.1 Proof of Theorem 1

Lemma 1. For any non-negative integers m1, m2, m3, any u1, u2, u3 ∈ O×
and submodule M ⊆ E, a map

φ : E → E ((f1, f2, f3) 7→ (πm1u1f1, π
m2u2f2, π

m3u3f3))

induces a Λ-isomorphism M → φ(M).

Proof. Since π does not divide f(T ), φ is an injective map. Therefore the
induced map φ :M → φ(M) is a Λ-isomorphism.

Lemma 2. For any u ∈ O× with u ̸≡ 0, 1, we have [0, 1, u] = [0, 1, 2].

Proof. Let M = ⟨(1, 1, 1), (0, 1, u), (0, 0, π)⟩ ∈ [0, 1, u]. Then for any u′ ∈ O
with u′ ̸= u, there exists some u′′ ∈ O× such that (u′′, 1, u′) ∈ O×(1, 1, 1) +
O(0, 1, u). Hence we have M = ⟨(u′′, 1, u/2), (0, 1, u), (0, 0, π)⟩. By Lemma
1, M is Λ-isomorphic to ⟨(1, 1, 1), (0, 1, 2), (0, 0, π)⟩ ∈ [0, 1, 2].

Lemma 3. For isomorphism classes in Mf(T ), we have

[0, 0, 0] ∋ E,

[0, 1, 1] ∋ Λ/(T − α1)⊕ Λ/((T − α2)(T − α3)),

[0, 1, 0] ∋ Λ/(T − α2)⊕ Λ/((T − α3)(T − α1)),

[1, 0, 0] ∋ Λ/(T − α3)⊕ Λ/((T − α1)(T − α2)),

[1, 2, uπ] ∋ Λ/((T − α1)(T − α2)(T − α3)).

Proof. If α′1 ̸≡ α′2 mod (π2), the cardinality of M(T−α′
1)(T−α′

2)
is two and

M(T−α′
1)(T−α′

2)
= {[0], [1]}, where [i] is the isomorphism class of a sub-

module ⟨(1, 1), (0, πi)⟩ ⊆ Λ/(T − α′1) ⊕ Λ/(T − α′2) (cf. [4]). [0] contains
Λ/(T − α′1)⊕ Λ/(T − α′2), and [1] contains Λ/((T − α′1)(T − α′2)). We have
⟨(1, 0, 0), (0, 1, 0), (0, 0, 1)⟩ ∈ [0, 0, 0], ⟨(1, 0, 0), (0, 1, 1), (0, 0, π)⟩ ∈ [0, 1, 1],
⟨(1, 0, 1), (0, 1, 0), (0, 0, π)⟩ ∈ [0, 1, 0] and ⟨(1, 1, 0), (0, π, 0), (0, 0, 1)⟩ ∈ [1, 0, 0].
Put

C = ⟨(1, 1, 1), (0, π, uπ), (0, 0, π2)⟩.

Then C/(π, T )C ∼= O/(π) and C is a cyclic Λ-module. Hence the lemma
follows.
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Proof. (Theorem 1) By the structure theorem, for [M ] ∈ Mf(T ) there is an in-
jective Λ-homomorphism ψ :M → E with finite co-kernel. By Lemma 1, we
may assume ψ(M) contains (1, 1, 1) ∈ E. Let ψ(M) = ⟨(1, 1, 1), (0, πi, a), (0, 0, πj)⟩O.
Since TM ⊂ M , ψ(M) ∋ (0, π, uπ), (0, 0, π2). Hence we have (i, j) =
(0, 0), (0, 1), (1, 0), (1, 1) or (1, 2). For a ≡ a′ mod (πj), we have [i, j, a] =
[i, j, a′]. Therefore, if (i, j) = (0, 0), then M ∈ [0, 0, 0]. In a similar way, if
(i, j) = (1, 0), then M ∈ [1, 0, 0]. Since (0, π, uπ) ∈ ψ(M), if (i, j) = (1, 1),
π divides a and M ∈ [1, 1, 0]. Similarly, if (i, j) = (1, 2), M ∈ [1, 2, uπ]. By
Lemma 2, if (i, j) = (0, 1), M ∈ [0, 1, 0], [0, 1, 1] or [0, 1, 2].

LetM1 ∈ [1, 1, 0] andM2 ∈ [0, 1, 2]. For g(T ) ∈ Λ, denote by KerM1(g(T ))
(resp. KerM2(g(T ))) the kernel of the map M1 → M1 (resp. M2 → M2)
(m 7→ g(T )m). Then

KerM1(T − αk)/((T − αi)(T − αj)M1) ∼= O/(π)

as O-modules for any {i, j, k} = {1, 2, 3}. Similarly we have

KerM2(T − αk)/((T − αi)(T − αj)M2) ∼= O/(π).

Hence M1 and M2 are not contained by isomorphism classes which appeared
in Lemma 3. Further

KerM1((T − α2)(T − α3)) ∼= Λ/(T − α2)⊕ Λ/(T − α3)

and
KerM2((T − α2)(T − α3)) ∼= Λ/((T − α2)(T − α3)).

Therefore M1 ̸∼= M2 and this completes the proof.

2.2 Proof of Theorem 2

Let [M ] ∈ Mf(T ) and M = ⟨x1, x2, x3⟩O. Put

δi,j =

{
1 ∈ K i = j
0 ∈ K i ̸= j

and
yi = lim

←
yi,n ∈ lim

←
HomO(M/πnM,K/O),

where yi,n ∈ HomO(M/πnM,K/O) (yi,n(xj) = [δi,j/π
n]). Then we have

α(M) = ⟨y1, y2, y3⟩O. For g(T ) ∈ Λ, let A = A(x1, x2, x3, g(T )) be the (3, 3)-
matrix associated to a transformation M → M (m 7→ g(T )m). Then the
matrix associated to a transformation α(M) → α(M) (m′ 7→ g(T )m′) is the
transposed matrix At of A (cf. [3]).
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Proof. (Theorem 2)
By Lemma 3 and Corollary 15.27 of [5], the former statement immediately

follows.
Let M1 = ⟨(1, 1, 1), (0, π, 0), (0, 0, π)⟩ ⊂ E. Then the matrix associated

to a transformation M1 →M1 (m 7→ (T − α1)m) is

A1 =

 0 0 0
(α2 − α1)/π α2 − α1 0
(α3 − α1)/π 0 α3 − α1

 .

On the other hand, let M2 = ⟨(1, 1, 1), (0, 1, 2), (0, 0, π)⟩ ⊂ E. Then the
matrix associated to a transformation M2 →M2 (m 7→ (T − α1)m) is

A2 =

 0 0 0
α2 − α1 α2 − α1 0

(α1 − 2α2 + α3)/π 2(α3 − α2)/π α3 − α1

 .

Put

G =

 π −π 1
−1 (1− π)/2 1
−1 1 0

 .

It is easy to see that

G ∈ GL3(O) and G−1A1G = At
2.

This implies the latter statement.
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