Isomorphism classes and adjoints of certain Iwasawa modules

Hiroki Sumida*

Abstract

Let p be an odd prime number and \mathcal{O} the integer ring of a finite extension of \mathbf{Q}_p . We determine isomorphism classes of certain $\mathcal{O}[[T]]$ modules which are isomorphic to $\mathcal{O}^{\oplus 3}$ as \mathcal{O} -modules. Moreover we give some examples which are not isomorphic to their adjoints.

1 Results

Let p be an odd prime number and K a finite extension of the field \mathbf{Q}_p of p-adic integers. We denote by \mathcal{O} the integer ring of K and fix a prime element π of \mathcal{O} . Put $\Lambda = \mathcal{O}[[T]]$ the ring of one variable formal power series over \mathcal{O} .

Let M be a finitely generated torsion Λ -module. By Iwasawa's structure theorem (cf. Chapter 13 of [5]), there is a Λ -homomorphism

$$\varphi: M \to \bigoplus_{i=1}^{l} \Lambda/(f_i(T)) \oplus \bigoplus_{j=1}^{m} \Lambda/(\pi^{\mu_j})$$

with finite kernel and co-kernel, where $l, m, \mu_j \in \mathbb{Z}_{\geq 0}$ and $f_i(T) \in \mathcal{O}[T]$ is a distinguished polynomial. Put $\operatorname{char}(M) = \prod_{i=1}^l f_i(T) \prod_{j=1}^m \pi^{\mu_j}$.

^{*}Partly supported by the Grants-in-Aid for Encouragement of Young Scientists (No.11740020), the Ministry of Education, Science, Sports and Culture of Japan. 1991 Mathematics Subject Classification Primary 11R23

key words and phrases Iwasawa module, adjoints, Λ -isomorphism

For a distinguished polynomial $f(T) \in \mathcal{O}[T]$, we define

$$\mathcal{M}_{f(T)} = \left\{ \Lambda \text{-isomorphism class of } M \middle| \begin{array}{c} \operatorname{char}(M) = f(T) \text{ and } M \text{ has no} \\ \operatorname{non-trivial finite } \Lambda \text{-submodule} \end{array} \right\}.$$

For all isomorphism classes $[M] \in \mathcal{M}_{f(T)}$, we easily see that Ker $\varphi = 0$ and that $M \cong \mathcal{O}^{\oplus \deg f(T)}$ as \mathcal{O} -modules. In [3] and [4], all elements of $\mathcal{M}_{f(T)}$ are determined for all distinguished polynomials f(T) with deg $f(T) \leq 2$. Further it is shown that $[M] = [\alpha(M)]$ for all $[M] \in \mathcal{M}_{f(T)}$ if deg $f(T) \leq 2$, where

 $\alpha(M) = \lim_{\leftarrow} \operatorname{Hom}_{\mathcal{O}}(M/\pi^n M, K/\mathcal{O})$

and (Ty)(x) = y(Tx) for $y \in \operatorname{Hom}_{\mathcal{O}}(M/\pi^n M, K/\mathcal{O})$ and $x \in M/\pi^n M$. Concerning adjoints, see [1] and [2].

In this note, we determine all elements of $\mathcal{M}_{f(T)}$ and their adjoints for $f(T) = (T - \alpha_1)(T - \alpha_2)(T - \alpha_3), \ \alpha_1, \ \alpha_2, \ \alpha_3 \in (\pi), \ \alpha_1 \not\equiv \alpha_2 \mod (\pi^2), \ \alpha_2 \not\equiv \alpha_3 \mod (\pi^2) \ \text{and} \ \alpha_3 \not\equiv \alpha_1 \mod (\pi^2).$ Put

$$E = \Lambda/(T - \alpha_1) \oplus \Lambda/(T - \alpha_2) \oplus \Lambda/(T - \alpha_3).$$

Denote by [i, j, a] the isomorphism class of the following A-submodule of E:

$$\langle (1,1,1), (0,\pi^i,a), (0,0,\pi^j) \rangle$$

Theorem 1. Let f(T) be as above. Put $u = \frac{\alpha_3 - \alpha_1}{\alpha_2 - \alpha_1} \in \mathcal{O}^{\times}$. The cardinality of $\mathcal{M}_{f(T)}$ is seven. Moreover

$$\mathcal{M}_{f(T)} = \{ [0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 2, u\pi], [1, 1, 0], [0, 1, 2] \}.$$

Theorem 2. Let f(T) be as above. If $[M] \in \mathcal{M}_{f(T)}$ is not [1,1,0] nor [0,1,2], then

 $[M] = [\alpha(M)].$

On the other hand, for $[M_1] = [1, 1, 0]$ and $[M_2] = [0, 1, 2]$,

$$[\alpha(M_1)] = [M_2] \text{ and } [\alpha(M_2)] = [M_1].$$

2 Proofs

In this section, the setting is the same as in Theorem 1 and Theorem 2.

2.1 Proof of Theorem 1

Lemma 1. For any non-negative integers m_1 , m_2 , m_3 , any u_1 , u_2 , $u_3 \in \mathcal{O}^{\times}$ and submodule $M \subseteq E$, a map

$$\varphi: E \to E \quad ((f_1, f_2, f_3) \mapsto (\pi^{m_1} u_1 f_1, \pi^{m_2} u_2 f_2, \pi^{m_3} u_3 f_3))$$

induces a Λ -isomorphism $M \to \varphi(M)$.

Proof. Since π does not divide f(T), φ is an injective map. Therefore the induced map $\varphi: M \to \varphi(M)$ is a Λ -isomorphism. \Box

Lemma 2. For any $u \in \mathcal{O}^{\times}$ with $u \neq 0, 1$, we have [0, 1, u] = [0, 1, 2].

Proof. Let $M = \langle (1,1,1), (0,1,u), (0,0,\pi) \rangle \in [0,1,u]$. Then for any $u' \in \mathcal{O}$ with $u' \neq u$, there exists some $u'' \in \mathcal{O}^{\times}$ such that $(u'',1,u') \in \mathcal{O}^{\times}(1,1,1) + \mathcal{O}(0,1,u)$. Hence we have $M = \langle (u'',1,u/2), (0,1,u), (0,0,\pi) \rangle$. By Lemma 1, M is Λ -isomorphic to $\langle (1,1,1), (0,1,2), (0,0,\pi) \rangle \in [0,1,2]$. \Box

Lemma 3. For isomorphism classes in $\mathcal{M}_{f(T)}$, we have

$$[0,0,0] \ni E,$$

$$[0,1,1] \ni \Lambda/(T-\alpha_1) \oplus \Lambda/((T-\alpha_2)(T-\alpha_3))$$

$$[0,1,0] \ni \Lambda/(T-\alpha_2) \oplus \Lambda/((T-\alpha_3)(T-\alpha_1))$$

$$[1,0,0] \ni \Lambda/(T-\alpha_3) \oplus \Lambda/((T-\alpha_1)(T-\alpha_2))$$

$$[1,2,u\pi] \ni \Lambda/((T-\alpha_1)(T-\alpha_2)(T-\alpha_3)).$$

Proof. If $\alpha'_1 \not\equiv \alpha'_2 \mod (\pi^2)$, the cardinality of $\mathcal{M}_{(T-\alpha'_1)(T-\alpha'_2)}$ is two and $\mathcal{M}_{(T-\alpha'_1)(T-\alpha'_2)} = \{[0], [1]\}$, where [i] is the isomorphism class of a submodule $\langle (1,1), (0,\pi^i) \rangle \subseteq \Lambda/(T-\alpha'_1) \oplus \Lambda/(T-\alpha'_2)$ (cf. [4]). [0] contains $\Lambda/(T-\alpha'_1) \oplus \Lambda/(T-\alpha'_2)$, and [1] contains $\Lambda/((T-\alpha'_1)(T-\alpha'_2))$. We have $\langle (1,0,0), (0,1,0), (0,0,1) \rangle \in [0,0,0], \langle (1,0,0), (0,1,1), (0,0,\pi) \rangle \in [0,1,1], \langle (1,0,1), (0,1,0), (0,0,\pi) \rangle \in [0,1,0]$ and $\langle (1,1,0), (0,\pi,0), (0,0,1) \rangle \in [1,0,0]$. Put

$$C = \langle (1, 1, 1), (0, \pi, u\pi), (0, 0, \pi^2) \rangle.$$

Then $C/(\pi, T)C \cong \mathcal{O}/(\pi)$ and C is a cyclic Λ -module. Hence the lemma follows.

Proof. (Theorem 1) By the structure theorem, for $[M] \in \mathcal{M}_{f(T)}$ there is an injective A-homomorphism $\psi: M \to E$ with finite co-kernel. By Lemma 1, we may assume $\psi(M)$ contains $(1,1,1) \in E$. Let $\psi(M) = \langle (1,1,1), (0,\pi^i,a), (0,0,\pi^j) \rangle_{\mathcal{O}}$. Since $TM \subset M$, $\psi(M) \ni (0,\pi,u\pi)$, $(0,0,\pi^2)$. Hence we have (i,j) = (0,0), (0,1), (1,0), (1,1) or (1,2). For $a \equiv a' \mod (\pi^j)$, we have [i, j, a] = [i, j, a']. Therefore, if (i, j) = (0, 0), then $M \in [0, 0, 0]$. In a similar way, if (i, j) = (1, 0), then $M \in [1, 0, 0]$. Since $(0, \pi, u\pi) \in \psi(M)$, if (i, j) = (1, 1), π divides a and $M \in [1, 1, 0]$. Similarly, if $(i, j) = (1, 2), M \in [1, 2, u\pi]$. By Lemma 2, if $(i, j) = (0, 1), M \in [0, 1, 0], [0, 1, 1]$ or [0, 1, 2].

Let $M_1 \in [1, 1, 0]$ and $M_2 \in [0, 1, 2]$. For $g(T) \in \Lambda$, denote by $\operatorname{Ker}_{M_1}(g(T))$ (resp. $\operatorname{Ker}_{M_2}(g(T))$) the kernel of the map $M_1 \to M_1$ (resp. $M_2 \to M_2$) $(m \mapsto g(T)m)$. Then

$$\operatorname{Ker}_{M_1}(T - \alpha_k) / ((T - \alpha_i)(T - \alpha_j)M_1) \cong \mathcal{O}/(\pi)$$

as \mathcal{O} -modules for any $\{i, j, k\} = \{1, 2, 3\}$. Similarly we have

$$\operatorname{Ker}_{M_2}(T - \alpha_k) / ((T - \alpha_i)(T - \alpha_j)M_2) \cong \mathcal{O} / (\pi).$$

Hence M_1 and M_2 are not contained by isomorphism classes which appeared in Lemma 3. Further

$$\operatorname{Ker}_{M_1}((T-\alpha_2)(T-\alpha_3)) \cong \Lambda/(T-\alpha_2) \oplus \Lambda/(T-\alpha_3)$$

and

$$\operatorname{Ker}_{M_2}((T-\alpha_2)(T-\alpha_3)) \cong \Lambda/((T-\alpha_2)(T-\alpha_3)).$$

Therefore $M_1 \not\cong M_2$ and this completes the proof.

2.2 Proof of Theorem 2

Let $[M] \in \mathcal{M}_{f(T)}$ and $M = \langle x_1, x_2, x_3 \rangle_{\mathcal{O}}$. Put

$$\delta_{i,j} = \begin{cases} 1 \in K & i = j \\ 0 \in K & i \neq j \end{cases}$$

and

$$y_i = \lim_{n \to \infty} y_{i,n} \in \lim_{n \to \infty} \operatorname{Hom}_{\mathcal{O}}(M/\pi^n M, K/\mathcal{O}),$$

where $y_{i,n} \in \text{Hom}_{\mathcal{O}}(M/\pi^n M, K/\mathcal{O})$ $(y_{i,n}(x_j) = [\delta_{i,j}/\pi^n])$. Then we have $\alpha(M) = \langle y_1, y_2, y_3 \rangle_{\mathcal{O}}$. For $g(T) \in \Lambda$, let $A = A(x_1, x_2, x_3, g(T))$ be the (3,3)matrix associated to a transformation $M \to M$ $(m \mapsto g(T)m)$. Then the matrix associated to a transformation $\alpha(M) \to \alpha(M)$ $(m' \mapsto g(T)m')$ is the transposed matrix A^t of A (cf. [3]). *Proof.* (Theorem 2)

By Lemma 3 and Corollary 15.27 of [5], the former statement immediately follows.

Let $M_1 = \langle (1, 1, 1), (0, \pi, 0), (0, 0, \pi) \rangle \subset E$. Then the matrix associated to a transformation $M_1 \to M_1$ $(m \mapsto (T - \alpha_1)m)$ is

$$A_{1} = \begin{pmatrix} 0 & 0 & 0 \\ (\alpha_{2} - \alpha_{1})/\pi & \alpha_{2} - \alpha_{1} & 0 \\ (\alpha_{3} - \alpha_{1})/\pi & 0 & \alpha_{3} - \alpha_{1} \end{pmatrix}.$$

On the other hand, let $M_2 = \langle (1,1,1), (0,1,2), (0,0,\pi) \rangle \subset E$. Then the matrix associated to a transformation $M_2 \to M_2$ $(m \mapsto (T - \alpha_1)m)$ is

$$A_{2} = \begin{pmatrix} 0 & 0 & 0 \\ \alpha_{2} - \alpha_{1} & \alpha_{2} - \alpha_{1} & 0 \\ (\alpha_{1} - 2\alpha_{2} + \alpha_{3})/\pi & 2(\alpha_{3} - \alpha_{2})/\pi & \alpha_{3} - \alpha_{1} \end{pmatrix}.$$

Put

$$G = \begin{pmatrix} \pi & -\pi & 1\\ -1 & (1-\pi)/2 & 1\\ -1 & 1 & 0 \end{pmatrix}.$$

It is easy to see that

$$G \in GL_3(\mathcal{O})$$
 and $G^{-1}A_1G = A_2^t$.

This implies the latter statement.

References

- [1] L. Federer, Noetherian $\mathbb{Z}_p[[T]]$ -modules, adjoints, and Iwasawa theory, Illinois J. Math **30** (1986), 636–652.
- [2] K. Iwasawa, On Z_l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
- [3] M. Koike, On the isomorphism classes of Iwasawa modules associated to imaginary quadratic fields with $\lambda = 2$, J. Math. Sci. Univ. Tokyo **6** (1999), 371–396.
- [4] H. Sumida, Greenberg's conjecture and the Iwasawa polynomial, J. Math. Soc. Japan 49 (1997), 689–711.

[5] L. Washington, Introduction to cyclotomic fields. second edition, Graduate Texts in Math., vol. 83, Springer-Verlag: New York, 1997.

> Hiroki SUMIDA Faculty of Integrated Arts and Sciences Hiroshima University Kagamiyama Higashi-Hiroshima 739-8521, Japan sumida@mis.hiroshima-u.ac.jp