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Abstract

Let p be an odd prime number and O the integer ring of a finite
extension of Q,. We determine isomorphism classes of certain O[[T]]-
modules which are isomorphic to O3 as @-modules. Moreover we
give some examples which are not isomorphic to their adjoints.

1 Results

Let p be an odd prime number and K a finite extension of the field Q, of p-
adic integers. We denote by O the integer ring of K and fix a prime element
7 of O. Put A = O[[T]] the ring of one variable formal power series over O.

Let M be a finitely generated torsion A-module. By Iwasawa’s structure
theorem (cf. Chapter 13 of [5]), there is a A-homomorphism

p: M — @A/(fi(T)) & EBA/(W“-’)

with finite kernel and co-kernel, where [, m, p; € Z>o and f;(T) € O[T is a

l m
distinguished polynomial. Put char(M) = H 1:(T) H i
i=1 j=1
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For a distinguished polynomial f(7') € O[T, we define

B : : char(M) = f(T) and M has no
My = {A—lsomorpmsm class of M non-trivial finite A-submodule

For all isomorphism classes [M] € My, we easily see that Ker ¢ = 0

and that M = 0% /(1) a5 O-modules. In [3] and [4], all elements of M 7
are determined for all distinguished polynomials f(7') with deg f(T") < 2.
Further it is shown that [M] = [a(M)] for all [M] € My if deg f(T) < 2,
where

a(M) = liinHom@(M/ﬂ”M, K/O)

and (Ty)(z) = y(Tx) for y € Homp(M/7"M,K/O) and x € M/7x"M.
Concerning adjoints, see [1] and [2].

In this note, we determine all elements of M) and their adjoints for
f(T) = (T — ay)(T — ax)(T — a3), ay, az, az € (7), a1 # as mod (7?),
o # a3 mod (%) and a3 # a; mod (7?). Put

E=A)(T—-o)®A)(T — ) ® A)(T — az).
Denote by [, 7, a] the isomorphism class of the following A-submodule of E:

((1,1,1), (0,7, a), (0,0, 77)).

a3 — (1

Theorem 1. Let f(T') be as above. Putu = € O*. The cardinality

G2 — Qg
of Mgty 1s seven. Moreover

M ey = {[0,0,0],[0,1,0],[1,0,0],[0,1,1], 1,2, ur], [1,1,0], 0, 1,2]}.

Theorem 2. Let f(T) be as above. If [M] € My is not [1,1,0] nor
[0,1,2], then
[M] = [a(M))].

On the other hand, for [M,] = [1,1,0] and [Ms] = [0, 1, 2],

[a(My)] = [Ma] and [a(My)] = [M].

2 Proofs

In this section, the setting is the same as in Theorem 1 and Theorem 2.
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2.1 Proof of Theorem 1

Lemma 1. For any non-negative integers my, ms, ms, any uy, us, uz € O
and submodule M C E, a map

Q: FEF—-F ((fl, fg, fg) — (Wmlulfl, 7Tm2U2f2, 7Tm3U3f3))

induces a A-isomorphism M — o(M).

Proof. Since m does not divide f(T), ¢ is an injective map. Therefore the
induced map ¢ : M — (M) is a A-isomorphism. O

Lemma 2. For any u € O* with uw # 0,1, we have [0,1,u] = [0, 1,2].

Proof. Let M = ((1,1,1),(0,1,u),(0,0,7)) € [0,1,u]. Then for any v’ € O
with ' # u, there exists some u” € O* such that (uv”,1,u") € O*(1,1,1) +
O(0,1,u). Hence we have M = ((u”,1,u/2),(0,1,u),(0,0,7)). By Lemma
1, M is A-isomorphic to ((1,1,1),(0,1,2),(0,0,7)) € [0, 1, 2]. O

Lemma 3. For isomorphism classes in My, we have
[0,0,0] > E,

[0,1,1] 5 A/(T = o) ® A/((T = a2 )(T = 3)),

[0,1,00 5 A/(T — az) & A/((T — a)(T — n1)),

[1,0,0 3 A/(T — ag) @& A/((T = a1)(T — ),
[1,2,ur] 3 A/((T — o )(T — ao)(T — a3)).

Proof. If of # a4 mod (7°), the cardinality of M_a1)1r—ay) is two and
Mr_ayr-ay) = {[0],[1]}, where [i] is the isomorphism class of a sub-
module {(1,1),(0,7)) C A/(T — o)) ® A/(T — %) (cf. [4]). [0] contains
A/(T — o)) ® A/(T — o), and [1] contains A/((T' — o})(T — af)). We have
((1,0,0),(0,1,0),(0,0,1)) € [0,0,0], {(1,0,0),(0,1,1),(0,0,7)) € [0,1,1],
((1,0,1),(0,1,0), (0,0, 7)) € [0,1,0] and {(1, 1,0), (0, 7,0), (0,0,1)) € [1,0,0].
Put
C ={(1,1,1),(0, 7, un), (0,0,72)).

Then C/(m, T)C = O/(w) and C is a cyclic A-module. Hence the lemma
follows. O



Proof. (Theorem 1) By the structure theorem, for [M] € M sy there is an in-
jective A-homomorphism v : M — E with finite co-kernel. By Lemma 1, we
may assume (M) contains (1,1,1) € E. Let (M) = ((1,1,1), (0,7, a), (0,0,77)) 0.
Since TM C M, (M) > (0,7,un), (0,0,7%). Hence we have (i,j) =
(0,0),(0,1),(1,0),(1,1) or (1,2). For a = o’ mod (77), we have [i,j,a] =
[i,7,a’]. Therefore, if (i,7) = (0,0), then M € [0,0,0]. In a similar way, if
(i,7) = (1,0), then M € [1,0,0]. Since (0,7, ur) € (M), if (i,5) = (1,1),
7 divides a and M € [1,1,0]. Similarly, if (z,7) = (1,2), M € [1,2,un]. By
Lemma 2, if (z,5) = (0,1), M € [0,1,0], [0,1,1] or [0, 1,2].

Let M, € [1,1,0] and M € [0, 1,2]. For g(T') € A, denote by Keryy, (9(T"))
(resp. Kerp, (g(T))) the kernel of the map M; — M (resp. My — M)
(m + g(T)m). Then

Kety, (T — ag) /(T — ) (T — a;) My) = O/ ()
as O-modules for any {i,7,k} = {1,2,3}. Similarly we have
Keryg, (T = o) /(T = i) (T = ) My) = O ().

Hence M; and M, are not contained by isomorphism classes which appeared
in Lemma 3. Further

Kery, (T = ag)(T = ag)) = A/(T' = ) ® A/(T — o)

and
Kery, (T — a2)(T' = a3)) = A/((T — a2)(T — as)).

Therefore M; 22 M, and this completes the proof. O

2.2 Proof of Theorem 2
Let [M] € Myry and M = (x1, 22, 23)0. Put

s _ 1K i=
Wl 0eK i#)

and
y; = limy; , € lim Home (M /7" M, K/O),
— —

where y;,, € Homo(M/n"M, K/O) (yin(x;) = [6;;/7"]). Then we have
a(M) = (y1,y2,y3)o0. For g(T) € A, let A = A(xy,x9,23,9(T)) be the (3,3)-
matrix associated to a transformation M — M (m — g(T)m). Then the
matrix associated to a transformation a(M) — «(M) (m' — g(T)m') is the
transposed matrix A" of A (cf. [3]).



Proof. (Theorem 2)

By Lemma 3 and Corollary 15.27 of [5], the former statement immediately
follows.

Let M; = ((1,1,1),(0,7,0),(0,0,7)) C E. Then the matrix associated
to a transformation My — My (m — (T — aq)m) is

0 0 0
Ai=1 (w—ay)/m as—m 0
(g —aon)/m 0 a3 — oy

On the other hand, let M, = ((1,1,1),(0,1,2),(0,0,7)) C E. Then the
matrix associated to a transformation My — My (m — (T — aq)m) is

0 0 0
A2 = Qg — (X1 Qg — (1 0
(a1 =209+ ag) /7 2(as —aw)/T a3 —ay

Put
T —T 1
G = -1 (1-m/2 1
-1 1 0

It is easy to see that
G € GL3(0) and G 'A,G = AL,

This implies the latter statement. Il
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