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Abstract

Let k be a finite extension of Q and p a prime number. Let K
be a Zp-extension of k and S the set of all prime ideals in k which
are ramified in K. We denote by A′

∞ the p-Sylow subgroup of the
S-divisor class group of K. We give a criterion for A′

∞ = 0 which
can be applied for general Zp-extensions. Further we especially inves-
tigate the criterion for a totally real number field k in which p splits
completely.

1 Introduction

Let k be a finite extension of Q and p a prime number. Let K be a Zp-
extension of k and kn ⊂ K the unique cyclic extension of k of degree pn.
Further let S be the set of all prime ideals in k which are ramified in K. By
Theorem 1 in [11], all prime ideals in S lie above p. We assume that all prime
ideals in S are fully ramified in K. We denote by An the p-Sylow subgroup of
the ideal class group of kn. We put A∞ = lim

→
An, where the map : An → Am

is induced by the natural inclusion map in,m : kn ↪→ km for m ≥ n. We will
denote the induced maps by in,m. Similarly we denote by A′

n the p-Sylow
subgroup of the S-ideal class group of kn and put A′

∞ = lim
→
A′
n.

The main purpose of this paper is to investigate capitulation of S-ideals
H ′
n = Ker(in,∞ : A′

n → A′
∞). For totally real fields k and K = k∞ the

cyclotomic Zp-extension, some criteria for A′
∞ = 0, i.e. A′

n = H ′
n for all n

were given in [2, 4, 5, 6, 20]. We first generalize them to apply for general
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number fields k and general Zp-extensions. Put Sn = {pn|pp
n

n = i0,n(p), p ∈
S}. Denote by kn,pn the completion of kn at pn and by Upn the group of
principal units in kn,pn . We define the following groups (cf. [19]):

Un = {(upn) ∈
∏

pn∈Sn

Upn|
∏

pn∈Sn

(
upn , km/kn

pn

)
= 1 for all m ≥ n},

Vpn =
∩
m≥n

Nkm,pm/kn,pn
Upm , Vn =

∏
pn∈Sn

Vpn ,

Wpn =
∩
m≥n

Nkm,pm/kn,pn
k×m,pm , Wn =

∏
pn∈Sn

Wpn ,

where
(
u,k′/k

p

)
is the norm residue symbol. Let dn be the diagonal map

k×n →
∏

pn∈Sn
k×n,pn . Let En be the group of units in kn and E ′

n the group of
S-units in kn. Define

En = Un ∩ dn(En) and E
′
n = Un ∩ (dn(E ′

n)Wn),

where A is the topological closure of A.

Theorem 1. The following statements are equivalent.
(1) A′

∞ = 0.

(2) A′
0
∼= H1(kn/k, E

′
n) and Un = VnE

′
n for some n.

For every totally real number field k and the cyclotomic Zp-extension
k∞, it is conjectured that ♯An is bounded as n → ∞, which is equivalent to
A∞ = 0 (see [5, 11]). If Leopoldt’s conjecture is valid for k and p, i.e. (Z-rank
of E0) = (Zp-rank of E0), the conjecture is equivalent to A′

∞ = 0. Several
authors gave sufficient conditions for the conjecture and verified them for p =
3 and quadratic fields with small discriminants (see [2, 4, 7, 8, 13]). However
the conjecture is not proved in general. Following [5], we study two typical
cases. (A) Only one prime ideal in k ramifies in K. (B) k is a totally real
number field in which p splits completely, and Leopoldt’s conjecture is valid
for k and p. By studying inflation maps H2(kn/k, E

′
n) → H2(km/k, E

′
m),

we can show a difference between (A) and (B). The following corollary and
theorem are reformulations of Theorem 1 and Theorem 2 in [5].

Corollary 1. Assume (A). The following statements are equivalent.
(1) A′

∞ = 0.
(2) A′

0
∼= H1(kn/k, E

′
n) for some n.

2



This corollary is immediately obtained from Theorem 1. In contrast to
the former result, Theorem 1 in [5], we do not have to assume that k is totally
real. For an extension M/L and a subgroup A of M×, we define

R(M/L,A) = Ker(H2(M/L,A) → H2(M/L,M×)).

Let jn be the natural map R(kn/k, En) → R(kn/k, E
′
n). For a Z-module A,

put rkpA = dimFp(A/pA). We denote by m ≫ n that m − n is sufficiently
large.

Theorem 2. Assume (B). The following statements are equivalent.
(1) A′

∞ = 0.
(2) A′

0
∼= H1(kn/k, E

′
n) for some n and

rkpR(km/k, E
′
m) = rkp(R(km/k, E

′
m)/jm(R(km/k, Em))) for all m ≫ 0.

If (1) holds, the last statement can be verified by finite steps. We will
give an example which explains how to apply (2) for verification of (1).

For a general number field k, let k̃ be the composite of all Zp-extensions
of k and Lk̃ the maximal unramified abelian p-extension of k̃. Greenberg con-
jectured that Gal(Lk̃/k̃) is pseudo-null as a Zp[[Gal(k̃/k)]]-module. When k
is totally real and Leopoldt’s conjecture is valid for k and p, this is equiva-
lent to the above conjecture. For this generalized conjecture, capitulation of
S-ideal classes in Zp-extensions is also important (cf. [15, 17]). We hope our
criterion will play some role for study of multiple Zp-extensions.

2 General case

We use the same notation as in introduction. Put Γ = Gal(K/k) and Γn =
Gal(K/kn). Fix a topological generator γ of Γ and put γn = γp

n
. We denote

by Nm,n the norm map km → kn for m ≥ n. We will denote induced maps by
Nm,n. Put s = ♯S = ♯Sn and Hn = Ker(in,∞ : An → A∞). For a G-module
A, we denote by AG the fixed subgroup by all elements in G.

The following proposition was proved by Greenberg (see Proposition 2
and the proof of Theorem 1 in [5]).

Proposition 1. The following statements are equivalent.
(1) ♯An is bounded as n→ ∞.
(2) An = Hn for all n ≥ 0.
(3) AΓ

n ⊆ Hn for all n ≥ 0.
(4) A∞ = 0.
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In a similar way, we can prove the following proposition.

Proposition 2. The following statements are equivalent.
(1) ♯A′

n is bounded as n→ ∞.
(2) A′

n = H ′
n for all n ≥ 0.

(3) A′
n
Γ ⊆ H ′

n for all n ≥ 0.
(4) A′

∞ = 0.

Let Dn be the subgroup of An consisting of classes which contain ideals
whose prime divisors lie above S. Then we have A′

n = An/Dn. Let In be the
ideal group of kn, Pn the principal ideal group of kn and Qn = {a ∈ In| all
prime divisors of a lie above S}. Put Dm,n = ((Qmin,m(Pn))/in,m(Pn))[p] and
identify An with (in,m(In)/in,m(Pn))[p], where A[p] is the p-Sylow subgroup
of A.

Lemma 1. There are exact sequences:

0 → H1(km/kn, Em) → Dm,nAn → AΓn
m → R(km/kn, Em) → 0,

0 → H1(km/kn, E
′
m) → A′

n → A′
m

Γn → R(km/kn, E
′
m) → 0.

Further
H1(km/kn, Em) ∼= Em[Nm,n]/E

γn−1
m ,

R(km/kn, Em) ∼= (E0 ∩Nm,nk
×
m)/Nm,nEm,

H1(km/kn, E
′
m)

∼= E ′
m[Nm,n]/E

′
m
γn−1

,

R(km/kn, E
′
m)

∼= (E ′
0 ∩Nm,nk

×
m)/Nm,nE

′
m,

where A[Nm,n] = Ker(A→ A (a 7→ Nm,na)).

Proof. We obtain the above exact sequences from the p-part of seven term ex-
act sequences independently found by Auslander-Brumer and Chase-Harrison-
Rosenberg (see [1, 12]). For a Gal(km/kn)-module A, since Gal(km/kn) is
cyclic, we have

H1(km/kn, A) ∼= A[νn,m]/A
γn−1 and H1(km/kn, A) ∼= A[γn − 1]/Aνn,m ,

where νn,m =
∑pm−n−1

i=0 γin, A[νn,m] = Ker(A → A (a 7→ aνn,m)) and A[γn −
1] = Ker(A → A (a 7→ aγn−1)). Since Nm,na = aνn,m and AΓn = A[γn − 1],
the lemma follows.

Lemma 2. For ε ∈ E ′
n, ε ∈ Nm,nk

×
m if and only if dn(ε) ∈ WnU

pm−n

n .
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Proof. For a prime ideal qn of kn which is not contained in Sn, qn does not
ramify in km. Hence by local class field theory, ε is a local norm from the
completion of km at any prime ideals lying above qn. For pn ∈ Sn, ε is a local

norm from km,pm if and only if ε ∈ WpnU
pm−n

pn by local class field theory. By
the Hasse norm principle, the assertion follows.

Let ptn (resp. pt
′
n) be the minimum annihilator of the group Un/(VnEn)

(resp. Un/(VnE
′
n)). If Un/(VnEn) (resp. Un/(VnE

′
n)) is not finite, we define

tn = ∞ (resp. t′n = ∞).

Proposition 3. For m ≥ n ≥ 0,

♯AΓn
m =

♯An · p(m−n)(s−1)

[En : En ∩Nm,nk×m]
≤ ♯An · ♯(Un/(VnEn)),

♯A′
m

Γn =
♯A′

n · p(m−n)(s−1)

[E ′
n : E ′

n ∩Nm,nk×m]
≤ ♯A′

n · ♯(Un/(VnE
′
n)).

If ♯(Un/(VnEn)) <∞ (resp. ♯(Un/(VnE
′
n)) <∞) and m ≥ n+tn (resp. m ≥

n+ t′n), inequality can be replaced with equality.

Proof. By Lemma 4.1 in Chapter 13 in [14], we obtain the first equality.
If Un/(VnEn) is not finite, the above inequality automatically holds. So
assume that Un/(VnEn) is finite. Since Sn = s, Un/Vn ∼= Zp

s−1. By Lemma
2, ε ∈ En∩Nm,nk

×
m if and only if dn(ε

q−1) ∈ VnU
pm−n

n , where q is a large power

of p. So Un/(VnUn ∩ dn(En ∩Nm,nk×m)) = Un/(VnU
pm−n

n ) ∼= (Z/p(m−n)Z)s−1

for m ≥ n+ tn. Since

En/(En∩Nm,nk
×
m) → (VnEn)/(VnUn ∩ dn(En ∩Nm,nk×m)) ([ε] 7→ [dn(ε)

q−1])

is an isomorphism, the first assertion follows. The other assertion can be
proved in the same way.

Theorem 1. The following statements are equivalent.
(1) A′

∞ = 0.

(2) A′
0
∼= H1(kn/k, E

′
n) and Un = VnE

′
n for some n.

Proof. Using Lemma 1, we obtain the following commutative diagram with
exact columns:

0 → H1(km/k, E
′
m) → A′

0 → A′
m

Γ → R(km/k, E
′
m) → 0

↑ Inf1n,m ∥ ↑ in,m ↑ Inf2n,m
0 → H1(kn/k, E

′
n) → A′

0 → A′
n
Γ → R(kn/k, E

′
n) → 0,
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where Inf1n,m maps [εn]n to [εn]m and Inf2n,m maps [ε]n to [εp
m−n

]m.
Assume (1). Then we have i0,nA

′
0 = 0 and A′

0
∼= H1(kn/k, E

′
n) for n≫ 0

by Proposition 2. Since ♯A′
n is bounded as n → ∞, ♯A′

n
Γ is bounded as

n→ ∞. This implies that U0/(V0E
′
0) is finite and that

U0 ∩ d0(E ′
0 ∩Nn,0k×n )W0V0 = Upn

0 V0

for n ≥ t′0 by Lemma 2. Since Inf2n,m is a zero map for m ≫ n, for all

ε ∈ E ′
0 ∩Nn,0k

×
n there exist some εm ∈ E ′

m with εp
m−n

= Nm,0εm. Hence we
have

U0 ∩ d0(Nm,0E ′
m)W0V0 = Upm

0 V0

for m≫ n. Since Nm,0 : Um/Vm → (Upm

0 V0)/V0 is an isomorphism, we obtain

Um = VmE
′
m.

Assume (2). Let n be an integer which satisfies Un = VnE
′
n. Since in,m :

Un/Vn → Um/Vm is an isomorphism (cf. [19]), we have Um = VmE
′
m for m ≥

n. For all ε ∈ E ′
0 ∩Nn,0k

×
n there exists εn ∈ E ′

n such that d0(ε(Nn,0εn)
−1) ∈

Upm

0 W0 for any m ≥ n. By Lemma 2, ε(Nn,0εn)
−1 = ε′ ∈ E0 ∩ Nm,0k

×
m.

Therefore we have

Inf2n,m([ε]n) = [ε]p
m−n

m = [ε(Nn,0εn)
−1]p

m−n

m = [ε′]p
m−n

m .

Since U0/(V0E
′
0) is a quotient of U0/(V0U

pn

0 ), ♯AΓ
n and ♯Rn(kn/k, E

′
n) are

bounded as n → ∞ by Proposition 3. For m ≫ n, Inf2n,m becomes a zero

map and A′
n
Γ ⊆ H ′

n. Therefore, (2) implies (1) by Proposition 2.

As follows from the proof, if Un = VnE
′
n for some n, then it holds for all

n≫ 0.

Corollary 1. Assume (A) only one prime ideal in k ramifies in K. The
following statements are equivalent.
(1) A′

∞ = 0.
(2) A′

0
∼= H1(kn/k, E

′
n) for some n.

Proof. Since s = 1, we have Un = Vn. Therefore by Theorem 1, the assertion
follows.

3 Totally real case

3.1 Theorem

In this section, we assume (B) k is a totally real number field in which p splits
completely, and Leopoldt’s conjecture is valid for k and p. This conjecture

6



is valid if and only if ♯AΓ
n is bounded as n → ∞ (cf. Proposition 3). Under

the assumption (B), since Dn ⊆ AΓ
n, ♯An is bounded as n → ∞ if and only

if ♯A′
n is bounded as n → ∞. Moreover Leopoldt’s conjecture implies that

the cyclotomic Zp-extension k∞ is the unique Zp-extension of a totally real
number field k, i.e. K = k∞.

Lemma 3. Assume (B), then

E0 ∩Nn+t0,0k
×
n+t0

⊆ ±Epn

0

for all n ≥ 0.

Proof. Since p splits completely in k, V0 is trivial. Leopoldt’s conjecture
implies that U0/(V0E0) = U0/E0 is finite and that t0 < ∞. For ε ∈ E0,

ε ∈ Nn+t0,0k
×
n+t0 if and only if d0(ε

p−1) ∈ Upn+t0

0 (resp. d0(ε
2) ∈ Upn+t0+1

0 )

for odd prime p (resp. p = 2) by Lemma 2. Since Upt0
0 ⊆ E0, Leopoldt’s

conjecture implies that ε ∈ ±Epn

0 .

In the following lemma, we do not assume (B).

Lemma 4. Assume that K = k∞ the cyclotomic Zp-extension. For every
unit (resp. S-unit) ε ∈ k ∩Q∞, we have ε ∈ Nn,0En (resp. ε ∈ Nn,0E

′
n).

Proof. Put Qn′ = k ∩Q∞. Then we have kn ∩Q∞ = Qn′+n. Let us consider
an exact sequence of Lemma 1 for Qn. By local class field theory and the
Hasse norm principle, every unit in Qn is a local norm and also a global
norm. Since An for Q is trivial for all n ≥ 0 (cf. [9]), every unit is a norm of
some unit.

Lemma 5. Assume (B), then

Inf2n,m : H2(kn/k, En) → H2(km/k, Em)

is injective for m ≥ n≫ 0.

Proof. For ε ∈ E0, if ε
pm−n ∈ Nm,0Em, we have ε ∈ E0 ∩ Nn,0k

×
n by Lemma

2. Therefore it suffices to show that Inf2n,m : Rn → Rm is injective. Let m ≥
n ≥ t0. Suppose ε ∈ E0 ∩Nm,0k

×
m. Then we have ε = ±ηpm−t0 by Lemma 3.

Here we have ηp
n−t0 ∈ Nn,0k

×
n and −1 ∈ Nm,0Em by Lemma 4. Hence Inf2n,m :

Rn → Rm is surjective. By Leopoldt’s conjecture, U0 ∩ d0(E0 ∩Nn,0k×n ) =
Upn

0 and (Nn,0En)
pm−n ⊆ Nm,0Em for m ≥ n ≥ t0. Therefore we have

that ♯Rn ≥ ♯Rm and that ♯Rn is constant for n ≫ 0. This implies that
Inf2n,m : Rn → Rm is injective.
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Lemma 6. Assume (B), then

R(kn/k, E
′
n)

∼= Ker(Inf2n,∞)⊕R(kn/k, En),

Ker(Inf2n,∞) ∼= ⟨(ε)|ε ∈ E ′
0 ∩Nn,0k

×
n ⟩/⟨(ε)|ε ∈ Nn,0E

′
n⟩

for n≫ 0.

Proof. We first show that there exist two subgroups Πn, Π
′
n ⊆ E ′

0 ∩ Nn,0k
×
n

such that

R(kn/k, E
′
n)

∼= (E ′
0 ∩Nn,0k

×
n )/Nn,0E

′
n
∼= (Πn/Π

′
n)⊕ (E0 ∩Nn,0k

×
n )/Nn,0En

for all n ≫ 0. By Lemma 5, Leopoldt’s conjecture for k and p implies that
♯Dn ≤ ♯AΓ

n is bounded as n→ ∞. Since Nm,n : Dm → Dn is surjective, Nm,n

is an isomorphism for all m ≥ n ≫ 0. This implies that (Π′) = ⟨(ε)|ε ∈
Nn,0E

′
n⟩ ⊂ I0 is constant for all n ≫ 0. Further we see that (Π) = ⟨(ε)|ε ∈

E ′
0 ∩ Nn,0k

×
n ⟩ ⊂ I0 is also constant for all n ≥ t0 by Leopoldt’s conjecture

and Lemma 2. Let

(Π)/(Π′) ∼= Z/pn1Z⊕ Z/pn2Z⊕ · · · ⊕ Z/pns′Z

as an abelian group. Put a = max1≤i≤s′{ni} and let ai be an element in
E ′

0∩Nn+a,0k
×
n+a such that {(ai)} is a basis of (Π) and that {(ap

ni

i )} is a basis of
(Π′). Let bi be an element in Nn+a,0E

′
n+a such that (bi) = (ap

ni

i ). For n ≥ t0,

we have bi/a
pni

i = ±εp
a

i for some ε ∈ E0 by Lemma 3. Put a′i = aiε
pa−ni and

b′i = a′i
pni

= ±bi. By Lemma 2, we have εi ∈ E0∩Nn,0k
×
n and a′i ∈ E ′

0∩Nn,0k
×
n .

By Lemma 4, −1 ∈ Nn,0E
′
n and b′i ∈ Nn,0E

′
n. Put Πn = ⟨a′i⟩1≤i≤s′ and

Π′
n = ⟨b′i⟩1≤i≤s′ . Then we easily see E ′

0 ∩Nn,0E
′
n = Πn ⊕ (E0 ∩Nn,0En) and

Nn,0E
′
n = Π′

n ⊕Nn,0En. By Lemma 5, Inf2n,m : R(kn/k, En) → R(km/k, Em)
is an isomorphism for m ≥ n≫ 0. Therefore we have

Πn/Π
′
n
∼= Ker(Inf2n,m : R(kn/k, E

′
n) → R(kn/k, E

′
m))

= Ker(Inf2n,m : H2(kn/k, E
′
n) → H2(kn/k, E

′
m))

for m ≥ n+ a.

Theorem 2. Assume (B). The following statements are equivalent.
(1) A′

∞ = 0.
(2) A′

0
∼= H1(kn/k, E

′
n) for some n and

rkpR(km/k, E
′
m) = rkp(R(km/k, E

′
m)/jm(R(km/k, Em))) for all m ≫ 0.
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Proof. Take m and n such that they satisfy the assertion in Lemma 6. Using
Lemma 1 and Lemma 6, we obtain the following commutative diagram with
exact columns:

0 → H1(km/k, E
′
m) → A′

0 → A′
m

Γ → Ker(Inf2m,∞)⊕Rm → 0
↑ Inf1n,m ∥ ↑ in,m ↑ Inf2n,m

0 → H1(kn/k, E
′
n) → A′

0 → A′
n
Γ → Ker(Inf2n,∞)⊕Rn → 0,

where Rn = R(kn/k, En).
Assume (1). By Proposition 2, it follows A′

0
∼= H1(kn/k, E

′
n) for some n.

A map im,∞ : A′
m

Γ → A′
∞

Γ is a zero map if and only if R(km/k, Em) is trivial
form≫ 0. Therefore rkpR(km/k, E

′
m) = rkp(R(km/k, E

′
m)/jm(R(km/k, Em)))

follows.
Assume (2). By Lemma 6, R(km/k, Em) is trivial for m ≫ 0. By the

above diagram, im,∞ : A′
m

Γ → A′
∞

Γ is a zero map for m≫ 0. By Proposition
2, the assertion follows.

By [5, Theorem 2], A∞ = 0 if and only if AΓ
n/Dn for n ≫ 0. By the

following proposition and Theorem 2, we can show this assertion.

Proposition 4. Assume (B) and that i0,n(A
′
0) is trivial. For n≫ 0,

Ker(H0(kn/k,A
′
n) → H1(kn/k,Dn)) ∼= AΓ

n/Dn
∼= R(kn/k, En),

A′
n
Γ
/(AΓ

n/Dn) ∼= R(kn/k, E
′
n)/jn(R(kn/k, En)).

Proof. From a short exact sequence 0 → Dn → An → A′
n → 0, we have

AΓ
n/Dn

∼= Ker(H0(kn/k,A
′
n) → H1(kn/k,Dn)).

By Lemma 1, we obtain the following exact sequence:

0 → An
Γ/(Dni0,n(A0)) → R(kn/k, En) → 0.

Hence by Lemma 6, the assertions immediately follow.

3.2 Examples

Let k be a real quadratic field in which p splits. In this case, Leopoldt’s
conjecture immediately follows for all k and p. If A′

n = An/Dn is trivial for
all n ≥ 0, ♯An = ♯Dn ≤ ♯AΓ

n is bounded as n→ ∞ by Proposition 3.
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Theorem 3. Let k be a real quadratic field in which p splits. Suppose that A′
n

is not trivial for some n ≥ 0. Then the following statements are equivalent.
(1) A′

∞ = 0.
(2) (a) A′

0
∼= H1(kn/k, E

′
n) for some n,

(b) R(km/k, E
′
m) is cyclic as an abelian group for all m≫ 0,

(c) R(km/k, E
′
m)/jm(R(km/k, Em)) is not trivial for all m≫ 0.

Proof. Let (Π) and (Π′) be the same groups as in the proof of Lemma 6.
By Lemma 4, p is contained in Nn,0E

′
n for all n. Hence (Π)/(Π′) is a cyclic

group. Since Γ and An are p-groups, An is trivial if and only if AΓ
n is trivial.

For m ≫ 0, we have (Π)/(Π′) ∼= R(km/k, E
′
m)/jm(R(km/k, Em)). Therefore

the assertion follows by Theorem 2.

By Proposition 4, (2) is equivalent to the following statements.
(a) A′

0
∼= H1(kn/k, E

′
n) for some n,

(b) A′
m

Γ is cyclic as an abelian group for all m≫ 0,
(c) A′

m
Γ/(AΓ

m/Dm) is not trivial for all m≫ 0.
We will give examples of k to which we can apply Theorem 3.

Example 1. Let k = Q(
√
2659) and p = 3. The conjecture was verified

for this case in [4]. Following [2], Fukuda and Taya defined invariants n
(n)
0

and n
(n)
2 for real quadratic fields k and odd prime numbers p which can be

written as follows:

pn
(n)
0 = pn+1♯(Un/VnE

′
n), pn

(n)
2 = pn+1♯(Un/VnEn).

From the table of [4], n0 = n
(0)
0 = 2, n2 = n

(0)
2 = 3, n

(1)
0 = 2, n

(1)
2 = 4, ♯D0 =

p, ♯A0 = p, ♯D1 = p, ♯A1 = p2. Hence we have ♯A′
0 = 1, ♯(U0/V0E

′
0) = p and

♯(U1/V1E
′
1) = 1. By Theorem 1, we can verify the conjecture for k and p.

By the method in [7], we can verify the conjecture for this field and p = 3,
using cyclotomic units in k2.

Example 2. Let k = Q(
√
12007) and p = 3. From the table of [3], n0 = 3,

n2 = 3, n
(1)
0 = 3, n

(1)
2 = 4, ♯D0 = p, ♯A0 = p, ♯D1 = p, ♯A1 = p2. Hence we

have ♯A′
0 = 1, ♯(U0/V0E

′
0) = p2 and ♯(U1/V1E

′
1) = p. We cannot verify the

conjecture for k and p in the same way.
However, by our criterion, we can verify the conjecture for this case in

the following way. First we show that A′
n is cyclic as an abelian group for

all n. Let ψ be the non-trivial Dirichlet character associated to k and fψ(T )
the Iwasawa polynomial associated to p-adic L-function Lp(s, ψ) (see [10]).
Then we see that fψ(T ) is reducible of degree 2 in Zp[T ] by computation.
By the Iwasawa main conjecture proved in [16], Gal(M/k∞) is isomorphic to
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Zp⊕Zp as an abelian group, where M is the maximal abelian p-extension of
k unramified outside p (cf. [19]). Moreover, since A0 = D0

∼= Z/pZ and A′
n

is a quotient of Gal(M/k∞), A′
n is cyclic as an abelian group. Further, since

A′
n
Γ1 ⊇ AΓ1

n /Dn, ♯Dn ≥ ♯AΓ1
n /♯A

′
n
Γ1 = p4/p2 = p2 for n ≫ 1 by Proposition

3. Hence we have ♯A′
n
Γ = p2 ≥ ♯(AΓ

n/Dn) ≥ p3/p2 = p for n ≫ 1. Therefore
(a), (b) and (c) hold for k and p.

By the method in [7], we can verify the conjecture for this field and p = 3,
using cyclotomic units in k3.
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