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Abstract

Let p be a prime number and K a number field containing a primi-
tive p–th root of unity. It is known that an unramified cyclic extension
L/K of degree p has a power integral basis if it has a normal integral
basis. We show that for all p, the converse is not true in general.

1 Introduction

This is a sequel to the previous papers [10, 11, 12, 13]. For a finite extension

L/K of a number field K, it has a power integral basis (PIB for short) when

OL = OK [α] for some α ∈ OL. Here, OL (resp. OK) is the ring of integers of

L (resp. K). If L/K is Galois, it has a normal integral basis (NIB for short)

when OL is free of rank one over the group ring OK [Gal(L/K)]. Let p be a
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prime number and K a number field containing a primitive p–th root ζp of

unity. Then, it is known that an unramified cyclic extension L/K of degree

p has a PIB if it has a NIB (cf. Childs [3], [11]). Here and in what follows,

an extension of a number field is “unramified” when it is unramified at all

finite prime divisors. On the other hand, we showed in [10, 12, 13] that when

p = 2, 3, there exist infinitely many number fields K with ζp ∈ K× each of

which has an unramified cyclic extension of degree p with PIB but no NIB.

The main purpose of this note is to show that this assertion holds for all p.

Namely, we prove the following:

Theorem 1. Let p be an odd prime number, and N a multiple of (p −

1)p2. Then, there exist infinitely many number fields K of degree N each

of which contains ζp and has an unramified cyclic extension of degree p with

PIB but no NIB.

In the next section, we give more precise statements after recalling some

notation and related assertions.

2 Theorems

Let p be a fixed prime number, K a number field not necessarily containing

ζp, and E = EK the group of units of K. Put π = ζp − 1. An element

α ∈ K× relatively prime to p is “singular primary” when (α) = Ap for some

ideal A of K and α ≡ up mod πp for some u ∈ OK . The class in K×/(K×)p

represented by α is written in the form [α] or [α]K . We define subgroups
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H(K), E(K), N (K) of K×/(K×)p by

H(K) := {[α] ∈ K×/(K×)p
∣∣ α is singular primary},

E(K) := H(K) ∩ E(K×)p/(K×)p,
N (K) := {[ϵ] ∈ E(K×)p/(K×)p

∣∣ ϵ ∈ E, ϵ ≡ 1 mod πp}.

Clearly, we have

N (K) ⊆ E(K) ⊆ H(K).

We write (E/N )(K) for the quotient E(K)/N (K). We often regard these

groups as vector spaces over Fp = Z/pZ.

Let us assume that ζp ∈ K×. Then, it is well known (cf. Washington [24,

Exercises 9.2, 9.3]) that for [α] ∈ K×/(K×)p, the cyclic extension K(α1/p)/K

is unramified if and only if [α] ∈ H(K). In [3], Childs proved that for

[α] ∈ H(K), K(α1/p)/K has a NIB if and only if [α] ∈ N (K). Further,

F. Kawamoto, N. Suwa and the first author independently proved that for

[α] ∈ H(K), K(α1/p)/K has a PIB if [α] ∈ E(K), for which see [11]. From

the above, our target is the quotient group (E/N )(K).

Assume further that K is a CM–field and that p ≥ 3. Then, by the action

of the complex conjugation, we can decompose each group defined above into

the product of the even part and the odd part:

H(K) = H(K)+ ⊕H(K)−, etc.

Let µ(K) = ⟨ζpa⟩ be the group of p–power roots of unity in K, where ζpa is

a primitive pa–th root of unity. From the well known theorem on the units

of CM–fields (cf. [24, Theorem 4.12]), it immediately follows that

E(K)− ⊆ ⟨[ζpa ]⟩, and hence dim E(K)− ≤ 1, (1)
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where dim(∗) denotes the dimension of a vector space over Fp. It also follows

from the above mentioned theorem that N (K)− = {0}, for which see also

Brinkhuis [1]. Therefore, we can say that the odd part (E/N )(K)− = E(K)−

is a “tame” object. On the other hand, the even part (E/N )(K)+ is a “tough”

object because, to deal with it, we have to fight with the group of units of

the maximal real subfield of K. We prove the following theorems (Theorems

2, 3) on the odd part and the even part. Theorem 1 follows immediately

from Theorem 2.

Theorem 2. Let p be an odd prime number, and N a multiple of (p −

1)p2. Then, there exist infinitely many CM–fields K of degree N for which

ζp ∈ K× and (E/N )(K)− ̸= {0}.

Theorem 3. Let p be an odd prime number with p < 100, and N a

proper multiple of 2(p − 1)p with N/(2(p − 1)) not a power of p. Then,

there exist infinitely many CM–fields K of degree N for which ζp ∈ K× and

(E/N )(K)+ ̸= {0}.

This note is organized as follows. In Section 3, we give some simple

lemmas on (E/N )(K). In Section 4, we prove Theorem 2. In section 5,

we give a sufficient condition for (E/N )(K)+ ̸= {0} using some results in

cyclotomic Iwasawa theory. In Section 6, we prove Theorem 3.

3 Some lemmas

In this section, we give some simple lemmas on the quotient (E/N )(K).

Unless otherwise stated, p is a prime number including p = 2, and K is an
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arbitrary number field. As before, we denote by µ(K) the group of p–power

roots of unity in K.

Lemma 1. (I) Let L/K be a finite extension with p ∤ [L : K]. Then,

(E/N )(L) ̸= {0} if (E/N )(K) ̸= {0}. (II) Let L/K be a finite extension

with p ∤ [L : K]. Assume that p ≥ 3 and that K, L are CM–fields. Then,

(E/N )(L)± ̸= {0} if (E/N )(K)± ̸= {0}.

Proof. We prove only the first assertion. The second one is proved sim-

ilarly. Let ϵ be a unit of K with [ϵ]K ∈ E(K). Assume that [ϵ]L ∈ N (L).

Then, ϵ ≡ ηp mod πp for some η ∈ EL. Taking the norm from L to K, we

obtain

ϵn ≡ (NL/K η)
p mod πp with n = [L : K].

This implies [ϵ]K ∈ N (K) since p ∤ n. Hence, we obtain the assertion (I). □

Lemma 2. Let K be a number field. If the ramification index over Q of

any prime ideal of K dividing p is smaller than p, then (E/N )(K) = {0}.

In particular, if [K : Q] < p, then (E/N )(K) = {0}.

Proof. Let ϵ be a unit of K. Assume that ϵ ≡ up mod πp for some

u ∈ OK . Replacing ϵ with ϵn for some n with p ∤ n, we may well assume

that u ≡ 1 mod P for all prime ideals P of K over p. Then, we must have

up ≡ 1 mod πp since the ramification index of P is smaller than p for any P

with P|p. Thus, we obtain the assertion. □
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Lemma 3. (I) Let K be a number field with µ(K) = ⟨ζpa⟩ and a ≥ 1,

and F the maximal abelian field contained in K. We have [ζpa ] ̸∈ E(K) if

K/F is at most tamely ramified at p (i.e., at the primes over p). (II) Let

p ≥ 3, K a CM–field with ζp ∈ K×, and F as above. We have E(K)− = {0}

if K/F is at most tamely ramified at p.

Proof. The first assertion holds since the extension F (ζpa+1)/F is of degree

p and ramified at the primes over p. The second one follows from the first

one and (1). □

Remark 1. In the statement of Theorem 2, the degree N = [K : Q] must

be a multiple of p because of Lemma 3. We imposed the stronger condition

p2|N for a technical reason.

4 Proof of Theorem 2

To prove Theorem 2, we need the following lemma from the “genus theory”,

for which confer Roquette and Zassenhaus [21, Theorem 1]. For a number

field F , we denote by AF the Sylow p–subgroup of the ideal class group of

F .

Lemma 4. Let n be an integer with p|n. There exists an integer c(n)

depending only on n such that for any number field F of degree n, AF is

nontrivial if at least c(n) prime numbers are totally ramified in F .

Theorem 2 follows from the following:

Proposition 1. Let p be an odd prime number. Let N be a multiple of

(p−1)p2, n = N/((p−1)p), and ℓ a prime number with ℓ ≡ 1 mod 2n. Then,
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there exists a CM–field K of degree N for which ζp ∈ K× and E(K)− ̸= {0}

and in which the prime number ℓ is ramified.

Proof. Let r = c(n), and let ℓ = ℓ1, · · · , ℓr be r prime numbers with

ℓi ≡ 1 mod 2n. We easily see that there exists a real cyclic extension F/Q

of degree n in which the above r primes are totally ramified. Since p|n, we

obtain AF ̸= {0} from Lemma 4. Let k = F (ζp), and k
+ the maximal real

subfield of k. Then, since [k+ : F ] is not a multiple of p, AF ̸= {0} implies

A+
k ̸= {0}. Let H/k be the maximal unramified abelian extension over k of

exponent p. It follows from the definition of H(k) that

H = k(α1/p
∣∣ [α] ∈ H(k)).

Denote by X the Galois group Gal(H/k), which is naturally identified with

Ak/A
p
k by class field theory. The Kummer pairing

H(k)×X −→ µp

is defined by

⟨[α], g⟩ = (α1/p)g−1 for [α] ∈ H(k), g ∈ X = Ak/A
p
k.

This pairing is perfect and enjoys the property

⟨[α]ρ, gρ⟩ = ⟨[α], g⟩−1,

where ρ is the complex conjugation in Gal(k/Q). Hence, we obtain a perfect

pairing

H(k)− ×X+ −→ µp. (2)
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Therefore, as X+ = A+
k ̸= {0}, there exists a nontrivial element [α] in H(k)−.

By definition, we have

α ≡ up mod πp for some u ∈ Ok. (3)

We have µ(k) = ⟨ζp⟩ since the primes over ℓi’s are totally ramified in k/Q(ζp).

Hence, [ζp] is a nontrivial element of (k×/(k×)p)−. By Lemma 3, [ζp] ̸∈

H(k)−. Therefore, [α] and [ζp] are linearly independent over Fp. Put β =

ζp/α, γ = β1/p, and K = k(γ). From the above, we see that K/k is a cyclic

extension of degree p (i.e., [K : Q] = N), and that µ(K) = ⟨ζp⟩. Further, by

(3), ζp ≡ upγp mod πp. Hence, the class [ζp]K is a nontrivial element of E(K).

Since [β] ∈ (k×/(k×)p)−, we see that there exists a cyclic extension K+/k+

of degree p such that K = K+k = K+(ζp) from the Kummer duality (i.e.,

a duality of the form (2)). Hence, K is a CM–field. Therefore, we obtain

E(K)− = ⟨[ζp]⟩ ̸= {0}. Finally, it is clear that ℓ ramifies in K. □

5 A sufficient condition for (E/N )(K)+ ̸= {0}

In this section, we give a sufficient condition for (E/N )(K)+ ̸= {0} using

some results in cyclotomic Iwasawa theory. Let p be a fixed odd prime

number, K an imaginary abelian field and ∆ = Gal(K/Q). We assume that

K satisfies the condition

(C1) ζp ∈ K× and the exponent of ∆ equals p− 1.

Let K∞/K be the cyclotomic Zp–extension with its n–th layer Kn (n ≥ 0).

For brevity, we write Hn, En, Nn, An in place of H(Kn), E(Kn), N (Kn),
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AKn , respectively. Let

X∞ = lim
←−

An

be the projective limit with respect to the relative norms. These groups are

naturally regarded as modules over the group ring Zp[∆]. By definition, for

each [α] = [α]n ∈ Hn, there exists an ideal A of Kn such that (α) = Ap.

By mapping [α] to the ideal class [A] ∈ An, we obtain the following exact

sequence of Zp[∆]–modules.

{0} −→ En −→ Hn −→ An. (4)

For a Zp[∆]–module M and a (Qp–valued) character ψ of ∆, M(ψ) de-

notes the ψ–component of M . Namely, M(ψ) is the maximal submodule of

M on which ∆ acts via ψ. We denote by λψ and µψ the Iwasawa λ–invariant

and the µ–invariant of the ideal class group X∞(ψ), respectively. We have

µψ = 0 by Ferrero and Washington [4]. Let χ be a fixed nontrivial even (Qp–

valued) character of ∆, ω the character of ∆ representing the Galois action

on ζp, and χ
∗ = ω · χ−1 the associated odd character. By the Iwasawa main

conjecture (= the theorem of Mazur and Wiles [20]), we can calculate the

invariant λχ∗ using “Stickelberger elements”. And there are several values of

λχ∗ , for which see Fukuda’s table [5]. On the other hand, it is conjectured

that λχ = 0 by Greenberg [7]. Though this conjecture is far to be settled,

a method to calculate λχ is established by Kraft and Schoof [18], Kurihara

[19] and the authors [14, 15].

Under the above setting, we assume that K and χ satisfy the following

two conditions.
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(C2) λχ∗ = 1 and λχ = 0.

(C3) There is only one prime ideal of K over p.

As µχ∗ = 0, it follows from λχ∗ = 1 and (C3) that

Hn(χ) ∼= Z/pZ for all n ≥ 0 (5)

using the Kummer duality (2). For this assertion, see for example, Section

5.1 of [9]. Let [α0]0 be a generator of H0(χ) with α0 ∈ K×, and A0 an ideal

of K such that (α0) = Ap
0. Assume further that

(C4) E0(χ) = {0}.

Then, by (the χ–component of) the exact sequence (4) and (5) with n = 0,

we see that A0 is not a principal ideal of K (and hence, A0(χ) ̸= {0}). Since

λχ = 0, the ideal A0 is capitulated in Kn for some n by [7, Proposition 2].

Denote by n0 the smallest such integer.

Theorem 4. Under the above setting, assume that K and χ satisfy the

four conditions (C1),· · · , (C4). Then, Hn(χ) = En(χ) for all n ≥ n0, and

Nn(χ) = {0} for all n ≥ 0. In particular, En(χ)/Nn(χ) ̸= {0} for all n ≥ n0.

Proof. By (5), Hn(χ) is generated by the class [α0]n. Then, since A0

is a principal ideal in Kn for n ≥ n0, the first assertion follows from (the

χ–component of) the exact sequence (4). By (C4), N0(χ) = {0}. Because of

the conditions (C1), (C2), (C3), this implies that Nn(χ) = {0} for all n ≥ 0

by virtue of [9, Proposition 1]. □
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6 Proof of Theorem 3

For proving Theorem 3, it suffices to show the following proposition because

of Lemma 1 (II).

Proposition 2. Let p be an odd prime number with p < 100, and e (≥ 1)

an integer. Then, there exist (at least one) imaginary abelian fields K of

degree 2(p− 1)pe for which ζp ∈ K× and (E/N )(K)+ ̸= {0}.

Let k = Q(
√
f) be a real quadratic field with its conductor f , χ the asso-

ciated even Dirichlet character, and K = k(ζp). We regard χ as a character

of ∆ = Gal(K/Q). Clearly, K satisfies (C1). In view of Theorem 4, it suf-

fices, for showing Proposition 2, to give (at least one) numerical examples of

k for which K and χ satisfy the conditions (C2), (C3), (C4) and n0 = 1. The

examples are exhibited in the tables at the end of this note for p < 100. To

check whether a given pair (K, χ) satisfies the above conditions, the hardest

part is to verify λχ = 0 and n0 = 1. We briefly explain how to verify them

following [15], after mentioning some simple remarks. Further, we explain

how to look at the tables.

It is clear that (C4) is equivalent to E(k) = {0}. Let ϵ be a fundamental

unit of k. Then, the condition E(k) = {0} holds if and only if

ϵp
2−1 ̸≡ 1 mod p2 or ϵp−1 ̸≡ 1 mod p(p,

√
f)

according as p ∤ f or p|f . This is shown by an argument similar to the proof

of Lemma 2. Hence, the condition (C4) is quite easily checked. As we have

mentioned in Section 5, we have

Ak = A0(χ) ̸= {0} (6)
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when λχ∗ = 1 and (C3), (C4) hold.

Let q be the least common multiple of f and p. By Iwasawa [17], there

exists a unique power series gχ(T ) in Zp[[T ]] related to the p–adic L–function

Lp(s, χ) by

gχ((1 + q)1−s − 1) = Lp(s, χ), for all s ∈ Zp.

When λχ∗ = 1, gχ(T ) has a unique zero α (∈ pZp). We have α ̸= 0 because

the Leopoldt conjecture holds for K by Brumer [2]. We can calculate the

value α mod pn using the approximation formula [17, Section 6] for gχ(T ).

For a while, we assume that the conditions (C3), (6) and λχ∗ = 1 are

satisfied. In [15], we introduced, for each n ≥ 0, a condition (Hn) which is

given in terms of an explicitly written cyclotomic unit of Kn and the value

α mod pn+e, where e = ordpα. The main theorem in [15] asserts that λχ = 0

if and only if (Hn) holds for some n ≥ 0. Let f ′ be the non–p–part of f .

For each prime number ℓ with ℓ ≡ 1 mod f ′pn+e, we introduced a condition

(H′n,ℓ) which is a kind of “reduction modulo ℓ” of (Hn) and for which it is

quite easy to check whether or not hold by computer calculation. We showed

that (Hn) holds if and only if (H′n,ℓ) holds for some ℓ ([15, Proposition 2]). We

also showed that n0 = 1 if (H0) holds, and that for n ≥ 1, the condition (Hn)

is equivalent to n ≥ n0 if (H0) does not hold ([15, Proposition 1]). Further,

it is known (that |A0(χ)| ≤ pe and) that (H0) does not hold if and only if

|A0(χ)| = pe (7)

holds by [15, Remark 4]. The last condition (or equivalently, the opposite of

(H0)) is equivalent to (C4) except when p = 3 and p ramifies in k. For the

exceptional case, (C4) implies (7). For these, see Section 5.3 of [9].
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To find numerical examples, our computer calculation was practiced as

follows. First, we check whether or not (H0) is satisfied using (7). When

(H0) does not hold, we check, one by one starting from n = 1, whether or

not (H′n,ℓ) is satisfied for the first five prime numbers ℓ with ℓ ≡ 1 mod f ′pn+e.

Table I deals with prime numbers p with p ≥ 11 and all real quadratic

fields k = Q(
√
f) with f < 100, 000 satisfying (C3) and (6). For p =

31, 41 and p > 47, there are no such fields in the range f < 100, 000. A

corresponding tables for p = 3, 5, 7 are given in [15]. For f in the row

m0 = 0, 1, 2, we have λχ∗ = 1. For each f in the row m0 = 0, (K, χ)

satisfies (H0) (and hence, n0 = 1). However, as we explained above, it does

not satisfy (C4). For each f in the row m0 = 1, (K, χ) does not satisfy (H0),

but it satisfies (H1) (and (C4)). Therefore, it satisfies all the conditions (C1),

· · · , (C4) and n0 = 1. For each f in the row m0 = 2, (K, χ) does not satisfy

(H0) nor (H
′
1,ℓ) for the first five prime numbers ℓ with ℓ ≡ 1 mod f ′p1+e, but

it satisfies (H2) (and hence, n0 ≤ 2). By our method, we can not exclude the

possibility of n0 = 1 for these f . (For this, see Remark 2.) For each f in the

row m0 = @, we have λχ∗ > 1 and we have verified λχ = 0 by the method in

[14]. Further, the *–mark after the value f means that p ramifies in k. For

the other f , p remains prime in k.

For each prime number p with 3 ≤ p < 100, Table II gives a list of the

smallest f for which (K, χ) satisfies (C3), (C4), (6), and does not satisfy

(H0) but satisfies (H
′
1,ℓ) for some of the first five prime numbers ℓ with ℓ ≡

1 mod f ′p1+e. We also give, for each such f , the value of α mod p2 and the

smallest prime ℓ for which (H′1,ℓ) holds.
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Remark 2. Recently, in [22], the second author exploited a method to

calculate the exact value of n0 using not only cyclotomic units but also Gauss

sums.

Remark 3. As we have mentioned in Section 2, the difficulty for proving

(E/N )(K)+ ̸= {0} lies in that we need a knowledge on the p–adic behaviour

of the full group EK of all units. For abelian fields, we have a beautiful the-

orem of Iwasawa [16] and Gillard [6] on local units modulo cyclotomic units.

Under some conditions, we can use this for obtaining some rich information

on EK for abelian fields K. Proposition 1 of [9] which is crucial in the proof

of Theorem 4 was proved in this way. Greither [8] and, recently, Tsuji [23]

gave some generalization of this important theorem of Iwasawa and Gillard.
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TABLE I

p = 11
m0 f
0 36709 51553 91585

1

10401 14009 19021 19048 20369 22129 22501 24801 27473
32236 33833 43753 49953 50937 51457 51985 53349 55281
55336 55948 57409* 57713 65361 65797 67341 69209 69729*
78889 83569 84685 86017 86869 91384 91913 92265 92408
95477 97576

2 37353 65353

@ 1297 12161 26617 74857 91769

p = 13
m0 f
0 13033

1

8101 13457 14113 15377 18817 20977 21613 31241 33209
33857 34588 35297 39193 39201 40669 55569 58661 60029
61033 64313 68881 69009 77149 78028 79633 81785 83969
85265 90040 90313 90329 92417* 97973

2 24601 31193 40441 41801 45329 61989

@ 26241 82373 83377

p = 17
m0 f
1 11257 42937 47657 54541 55697 63505 65473 69697 79009

p = 19
m0 f
1 31333 38569 44101 49393 54753 68281 70429 71689 97141

@ 18229 39801

p = 23
m0 f
1 30977 56065 67409 91813
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p = 29
m0 f

1 49281 56857 90001 99401

p = 37
m0 f

1 55561 94321

p = 43
m0 f
0 14401

p = 47
m0 f
1 78401
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TABLE II

p f α mod p2 l
3 761 3 27397
5 1093 15 437201
7 577 35 113093
11 10401 33 7551127
13 8101 156 16428829
17 11257 170 39039277
19 31333 171 248846687
23 30977 230 196641997
29 49281 812 414453211
31 158649 372 2744310403
37 55561 740 3042520372
41 205753 943 1383483173
43 189229 817 41986130531
47 78401 2021 34637561811
53 312361 1643 10529064589
59 360697 2124 87891037991
61 586321 3233 61087612349
67 614657 67 38628733823
73 444089 4745 255587430349
79 641521 3397 160149302441
83 1022869 4067 211396336231
89 614849 7031 68183065007
97 1106209 1164 603682587899
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