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Abstract

Let p be a prime number. A number field F satisfies the condition
(Ap) when any tame cyclic extension N/F of degree p has a normal
integral basis. By Hilbert and Speiser, the rationals Q satisfy (Ap) for
all primes p. Greither et al proved that F ̸= Q does not satisfy (Ap) for
infinitely many primes p. It is of interest to determine which number
field satisfies (Ap). The imaginary quadratic fields F satisfying (A2)
were determined by Carter. Those satisfying (A3) were determined by
Carter and the first author independently. In this paper, we determine
the imaginary quadratic fields F satisfying (Ap) for p = 5, 7 or 11.

1 Introduction

Let p be a prime number, and Γ = Γp the cyclic group of order p ; Γ = F+
p ,

where F+
p is the additive group of the finite field F p of p elements. We

say that a number field F satisfies the condition (Ap) when for any tame
Γ-extension N/F , ON is cyclic over the group ring OFΓ. Here, OF is the
ring of integers of F . It is well known by Hilbert and Speiser that the
rationals Q satisfy (Ap) for all primes p. In [6, Theorem 1], Greither et al
gave a necessary condition for a number field F to satisfy (Ap) in terms of
(a subgroup of ) the ray class group of F defined modulo p, using a theorem
of McCulloh [20, 21]. Applying the condition, they proved that F ̸= Q
does not satisfy (Ap) for infinitely many primes p ([6, Theorem 2]). Thus,
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it is of interest to determine which number field F satisfies (Ap). Several
authors [3, 4, 11, 12, 13] obtained some results on the problem using the
condition (and some other results such as a theorem of Gómez Ayala [5,
Theorem 2.1]). For instance, it was shown by Carter [3, Corollary 3] that an
imaginary quadratic field F = Q(

√
−d) with d > 0 square free satisfies (A2)

if and only if d = 1, 3 or 7. Further, all quadratic fields satisfying (A3) were
determined independently in [3, Corollary 5] and [12, Proposition]. There
are exactly four imaginary and eight real ones satisfying (A3). The purpose
of this paper is to determine all imaginary quadratic fields satisfying (Ap) for
p = 5, 7 or 11. The result is as follows:

Theorem 1 An imaginary quadratic field F = Q(
√
−d) with a square

free positive integer d satisfies the condition (A5) if and only if d = 1 or 3.
It satisfies (A7) if and only if d = 3. No imaginary quadratic field satisfies
(A11).

As in [6], the above mentioned theorem of McCulloh plays an important
role for proving Theorem 1. In Section 2, we recall McCulloh’s theorem and
its several consequences including the above mentioned condition for (Ap) in
[6]. In Section 3, we give some conditions for an imaginary quadratic field to
satisfy (Ap) and prove Theorem 1. In Section 4, we review some topics on
subfields of the p-cyclotomic field Q(ζp) satisfying (Ap).

2 Consequences of McCulloh’s theorem

In this section, we recall a theorem of McCulloh [20, 21] and its several
consequences. Let F be a number field. For an integer a ∈ OF , let ClF (a)
be the ray class group of F defined modulo the ideal aOF . We simply write
ClF = ClF (1), the absolute class group of F . Let Cl(OFΓ) be the locally free
class group of the group ring OFΓ, and let Cl0(OFΓ) be the kernel of the
homomorphism Cl(OFΓ) → ClF induced from the augmentation OFΓ →
OF . The class group Cl0(OFΓ) is known to be a quotient of some copies
of the ray class group ClF (ζp)(p), but it is a quite difficult object in general.
Let R(OFΓ) be the subset of Cl(OFΓ) consisting of locally free classes [ON ]
for all tame Γ-extensions N/F . It follows that F satisfies (Ap) if and only if
R(OFΓ) = {0}. It is known that R(OFΓ) ⊆ Cl0(OFΓ). Let G = F×

p be the
multiplicative group of F p. Through the natural action of G on Γ = F+

p , the
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group ring ZG acts on Cl(OFΓ). Let SG be the classical Stickelberger ideal
of the group ring ZG. For the definition, see Washington [26, Chapter 6].

Theorem 2 ([21]). Under the above setting, we have

R(OFΓ) = Cl0(OFΓ)
SG .

Let O×
F be the group of units of a number field F . For an integer a ∈ OF ,

let [O×
F ]a be the subgroup of the multiplicative group (OF/a)

× consisting of
classes containing a unit of F . The quotient (OF/a)

×/[O×
F ]a is a subgroup

of the ray class group ClF (a). Greither et al [6] proved the following relation
between the condition (Ap) and ClF (p) from Theorem 2 studying a canonical
subgroup of Cl(OFΓ), called the Swan subgroup.

Proposition 1 ([6, Theorem 1]). Assume that a number field F satis-
fies the condition (Ap). Then, the exponent of the quotient (OF/p)

×/[O×
F ]p

divides (p− 1)2/2 when p ≥ 3, and (OF/p)
× = [O×

F ]p when p = 2.

The following is obtained from Proposition 1 and [5, Theorem 2.1].

Proposition 2 ([11, Proposition 2]). A number field F satisfies the con-
dition (A2) if and only if the ray class group ClF (2) is trivial.

Similar conditions for (A2) are given also in [3, Theorem 2] and in Herreng
[9, Theorem 2.1]. In view of Proposition 2, we let p ≥ 3 in the following. To
give another consequence of Theorem 2, we need to recall a “Stickelberger
ideal” associated to a subgroup of G. Let H be a subgroup of G. For an
element α ∈ ZG, let

αH =
∑
σ∈H

aσσ ∈ ZH with α =
∑
σ∈G

aσσ.

In other words, αH is a H-part of α. In [14], we defined a Stickelberger ideal
SH of ZH by

SH = {αH | α ∈ SG} ⊆ ZH.

Several properties of the ideal SH are studied in [14, 15, 17, 18]. For an
integer i ∈ Z, let ī be the class in F p = Z/p containing i. It is known that
the ideal SH is generated over Z by Stickelberger elements

θH,r =
∑
i

′
[
ri

p

]
· ī−1 ∈ ZH (1)
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for all integers r ∈ Z. Here, i runs over the integers with 1 ≤ i ≤ p− 1 and
ī ∈ H, and for a real number x, [x] is the largest integer ≤ x. Let NH be the
norm element of ZH. It follows that

NH = −θH,−1 ∈ SH .

Letting ρ be a generator of H, put

nH =

{
1 + ρ+ · · ·+ ρ|H|/2−1, if |H| is even,
1, if |H| is odd.

As is easily seen, the ideal ⟨nH⟩ = nHZH does not depend on the choice of ρ.
It is known that SH ⊆ ⟨nH⟩ ([18, Lemma 1]) and that the quotient ⟨nH⟩/SH

is a finite abelian group whose order divides the relative class number h−
p of

the p-cyclotomic field Q(ζp) ([18, Theorem 2]) :

[⟨nH⟩ : SH ] | h−
p . (2)

Let F be a number field, and K = F (ζp). We naturally identify the
Galois group Gal(K/F ) with a subgroup H of G through the Galois action
on ζp. Then, the group ring ZH acts on several objects associated to K/F .
Let π = ζp − 1. The following assertion was obtained from Theorem 2 and
Proposition 1.

Proposition 3 ([13, Theorem 5]). Let F be a number field, and let K =
F (ζp) and H = Gal(K/F ) ⊆ G. If F satisfies (Ap), then we have

ClK(π)
SH = {0} and ClK(p)

SH ∩ ClK(p)
H = {0}.

Here, ClK(p)
H is the Galois invariant part.

It is known that the converse of this assertion holds when p = 3 ([12,
Theorem 2]). The following is a consequence of Proposition 3.

Proposition 4 Let F and K be as in Proposition 3. Assume that F
satisfies (Ap) and that the norm map ClK → ClF is surjective. Then, the
natural map ClF → ClK is trivial. In particular, the exponent of ClF divides
[K : F ].

Proof. By the assumption, any ideal class c ∈ ClF is of the form c = dNH

for some d ∈ ClK . However, when F satisfies (Ap), the class d
NH is trivial in
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ClK by Proposition 3 and NH ∈ SH . □

When F/Q is unramified at p, the Galois group Gal(K/F ) is naturally
identified with G = F×

p through the Galois action on ζp. The following is a
consequence of Theorem 2.

Proposition 5 Assume that F/Q is unramified at p, and let K = F (ζp).
Then, F satisfies the condition (Ap) if and only if the Stickelberger ideal SG

annihilates the ray class group ClK(π).

Proof. Brinkhuis [2, Proposition (2.2)] proved that theZG-module Cl0(OFΓ)
is naturally isomorphic to the ray class group ClK(π) when F/Q is unrami-
fied at p. Hence, the assertion follows immedately from Theorem 2. □

Though the following assertion is irrelevant to the proof of Theorem 1, it
might be of some interest to the reader. For a CM-field K, let Cl−K be the
kernel of the norm map ClK → ClK+ where K+ is the maximal real subfield
of K.

Proposition 6 Let F be a totally real number field, and K = F (ζp). If
F satisfies (Ap), then the exponent of Cl−K divides 2h−

p .

Proof. Let H = Gal(K/F ) ⊆ G, and let ρ be a generator of H. As F
is totally real, |H| is even and J = ρ|H|/2 is the complex conjugation in H.
We easily see that (1 − ρ)nH = 1 − J , and that nHh

−
p ∈ SH by (2). Hence,

(1 − J)h−
p ∈ SH . Assume that F satisfies (Ap). Then, by Proposition 3,

(1− J)h−
p annihilates ClK . The assertion follows from this. □

Remark 1. The proof of Proposition 4 relies on the first equality of
Proposition 3 shown in the paper [13] which is not yet published. However,
when F/Q is unramified at p, we can prove it using Proposition 5 in place
of Proposition 3 exactly similarly. And, in the proof of Theorem 1, we can
concentrate on imaginary quadratic fields F/Q unramified at p by virtue of
Proposition 1, and we do not need the not yet unpublished result. (See the
first lemma in the next section.)

3 Imaginary quadratic fields

In this section, let p ≥ 3 be an odd prime number, and F = Q(
√
−d) an

imaginary quadratic field with a square free positive integer d.
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Lemma 1 When p is ramified in F/Q, F satisfies (Ap) if and only if
p = 3 and F = Q(

√
−3).

Proof. The “only if” part is an easy consequence of Proposition 1 since
(OF/p)

× is cyclic of order p(p − 1) when p ramifies in F . The “if” part is
due to [5, p. 110]. □

Lemma 2 (I) Let p = 3 or 5. When F ̸= Q(
√
−1), Q(

√
−3) and p is

inert in F , F does not satisfy (Ap).
(II) Let p ≥ 7. When p is inert in F , F does not satisfy (Ap).

Proof. This is an easy consequence of Proposition 1 since (OF/p)
× is

cyclic of order p2 − 1 when p is inert in F . □

In all what follows, we exclude the case where p = 3 and F = Q(
√
−3),

and we let K = F (ζp). Hence, by Lemma 1, if F satisfies (Ap), then F/Q is
unramified at p and the Galois group Gal(K/F ) is naturally identified with
G = F×

p .

Lemma 3 If F satisfies (Ap), then the exponent of the class group ClF
divides 2.

Proof. We use a standard argument in [26, pp. 289-290]. Assume that
F satisfies (Ap). As F/Q is unramified at p, K/F is totally ramified at the
primes over p. Hence, the natural map ClF → ClK is trivial by Proposition
4. Let A be an arbitrary ideal of F relatively prime to p. We have AOK =
αOK for some α ∈ K×. Let ρ be a generator of G, and J a generator of
Gal(F/Q) = Gal(K/K+) where K+ is the maximal real subfield of K. As A

is an ideal of F , we have α1−ρ = ϵ ∈ O×
K . On the other hand, A1+J = βOF

for some β ∈ Q×. Hence, α1+J = βη for some unit η ∈ O×
K . It follows that

ϵ1+J = (α1+J)1−ρ = η1−ρ

as β ∈ Q×. Putting α1 = α2/η, we have

α1OK = A2OK . (3)

Let
ϵ1 = αρ−1

1 = ϵ−2η1−ρ ∈ O×
K . (4)
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Then, it follows that

ϵ1+J
1 = ϵ−2(1+J)η(1−ρ)(1+J) = η(1−J)(ρ−1).

Hence, ϵ1 is a root of unity in K by a theorem on units of a CM-field (cf.
[26, Theorem 4.12]). Let µp be the group of p-th roots of unity in K. We
divide the cases according to whether ϵ1 ∈ µp or not.

The case ϵ1 ∈ µp. Since the map ρ − 1 : µp → µp is an isomorphism,
we can write ϵ1 = ζρ−1 for some ζ ∈ µp. Hence, it follows from (4) that
(α1/ζ)

ρ = α1/ζ and α1/ζ ∈ F×. Therefore, by (3), A2 is a principal ideal of
F .

The case ϵ1 ̸∈ µp. As the class groups ofQ(
√
−1) andQ(

√
−3) are trivial,

we may as well assume that F ̸= Q(
√
−1), Q(

√
−3). Then, the condition

ϵ1 ̸∈ µp implies that −ϵ1 ∈ µp, and hence, −ϵ1 = ζρ−1 for some ζ ∈ µp. On
the other hand, we have −1 = (

√
p∗)ρ−1 where p∗ = p if p ≡ 1 mod 4 and

p∗ = −p otherwise. Therefore, we see that ϵ1 = (
√
p∗ζ)ρ−1. Hence, it follows

from (4) that

(α1/
√
p∗ζ)ρ = α1/

√
p∗ζ and α1/

√
p∗ζ ∈ F×.

This implies that p is ramified in F as A is relatively prime to p. This is a
contradiction. □

Lemma 3 asserts that if the exponent of ClF is greater than 2, then F
does not satisfy (Ap) for any prime p. All imaginary quadratic fields F with
Cl2F = {0} were determined by Weinberger [27, Theorem 1] with possibly
one exception. A table of such F ’s is given in Miyada [22, p. 539]. There are
exactly 65 (or possibly 66) such F . In particular, we obtain the following:

Proposition 7 For each prime number p, there exist at most 65 (or pos-
sibly 66) imaginary quadratic fields satisfying the condition (Ap).

Lemma 4 Let p = 5, and E = F (
√
5). If F satisfies (A5), then the

natural map ClF → ClE is trivial.

Proof. Assume that F satisfies (A5). Let ρ be a generator of G =
Gal(K/F ). We have SG = ⟨1+ρ⟩ by h−

5 = 1 and (2). By the assumption and
Proposition 3 or 5, c1+ρ = 1 for any c ∈ ClK . As the norm map ClK → ClE is
surjective, this relation holds for any c ∈ ClE. As the norm map ClE → ClF
is surjective, any class d ∈ ClF is of the form d = NE/F (c) = c1+ρ for some
c ∈ ClE. Therefore, we obtain the assertion. □
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Lemma 5 Let p be a prime number with p ≡ 3 mod 4, and E = F (
√
−p).

If F satisfies (Ap), then the natural map ClF → ClE is trivial.

Proof. Assume that F satisfies (Ap). Let A be an ideal of F . By Propo-
sition 4, AOK = αOK for some α ∈ K×. Hence, A[K:E]OE = βOE with
β = NK/E(α). This implies that AOE is a principal ideal since [K : E] is odd
by the assumption on p and A2 is principal in F by Lemma 3. □

Lemma 6 Let p be a prime number with p ≡ 3 mod 4 or p = 5. If
F satisfies (Ap), then ClF is isomorphic to the abelian group (Z/2)⊕R with
R ≤ 2.

Proof. Let H
(2)
F /F be the maximal unramified abelian extension of ex-

ponent 2, and let E be as in Lemmas 4 and 5. Assume that F satisfies
(Ap). Then, the degree [H

(2)
F : F ] equals [H

(2)
F E : E] since E/F is totally

ramified at the primes over p. Let t be the number of prime numbers which
ramify in F . Let λ1, · · · , λr (resp. µ1, · · · , µs) be all the odd prime numbers
which ramify in F and congruent to 1 (resp. 3) modulo 4. The 2-rank of
ClF equals t− 1 by a well known theorem on quadratic fields (cf. Hecke [8,
Theorem 132]). Hence, by Lemma 3, it suffices to show that t ≤ 3 since we
are assuming that F satisfies (Ap). It is well known and easy to show that

H
(2)
F = F

(√
λi,

√
−µj | 1 ≤ i ≤ r, 1 ≤ j ≤ s

)
.

Let ℓ be any one of the prime numbers λi and µj, and let L be the prime ideal
of F over ℓ. By Lemmas 4 and 5, the ideal LOE is principal. This implies
that ℓ = ϵx2 for some unit ϵ ∈ O×

E and x ∈ E×. Therefore, we obtain

H
(2)
F E = E

(√
ϵ | ϵ ∈ O×

E

)
.

Now, from the above, it follows that

2t−1 = [H
(2)
F : F ] = [H

(2)
F E : E] = 1, 2 or 4

since the group O×
E is generated by two elements. Therefore, we obtain t ≤ 3.

□

For a number field N and a prime number q, let ClN [q] be the Sylow
q-subgroup of the class group ClN .
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Lemma 7 Let p ≥ 7 be a prime number with p ≡ 3 mod 4. Let K =
F (ζp), and let N be an intermediate field of K/F with 2 ∤ [K : N ]. If the
2-part ClN [2] is nontrivial and cyclic as an abelian group, then F does not
satisfy (Ap).

Proof. Assume that ClN [2] is nontrivial and cyclic, but that F satisfies
(Ap). Let c be a generator of the cyclic group ClN [2]. Then, we see that

cσ ≡ c mod 2ClN [2] (5)

for all σ ∈ G. As [K : N ] is odd, the natural map ClN [2] → ClK is injective.
Let c̄ and ClN [2] be the images of c and ClN [2] under this injection, respec-
tively. As F satisfies (Ap), the Stickelberger element θG,2 kills c̄. We easily
see that the augmentation ZG → Z maps the element θG,2 to (p−1)/2 from
the definition (1). Therefore, it follows from (5) that

1 = c̄ θG,2 ≡ c̄ (p−1)/2 mod 2ClN [2].

This implies that c(p−1)/2 ∈ 2ClN [2] as ClN [2] → ClK is injective. Hence, it
follows that c ∈ 2ClN [2] as (p− 1)/2 is odd. This is a contradiction. □

For a number field N , let hN be the class number of N .

Lemma 8 Let p be a prime number with p ≡ 3 mod 4 and p ≤ 19, and
let E = F (

√
−p). If the class number hE is divisible by an odd prime number

q relatively prime to (p− 1)/2, then F does not satisfy (Ap).

Proof. As q is relatively prime to (p−1)/2, the natural map ClE[q] → ClK
is injective. Let c be a class in ClE of order q, and c̄ its lift to K. The class
c̄ is nontrivial. Let ρ be a generator of G = Gal(K/F ). Assume that F
satisfies (Ap). Then, we see that c

ρ = c−1 since hF is a power of 2 by Lemma
3. Hence, it follows that

c̄ ρ = c̄−1. (6)

The condition p ≤ 19 is equivalent to h−
p = 1 (cf. [26, Corollary 11.18]).

Hence, by (2), the Stickelberger ideal SG is generated by nG. Since F satisfies
(Ap), we see that nG annihilates ClK by Proposition 3 or 5. As (p− 1)/2 is
odd, we see from (6) that

1 = c̄ nG = c̄ {1+(−1)}+···+{1+(−1)}+1 = c̄.

This is a contradiction. □
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Lemma 9 Let F be a quadratic field not necessarily imaginary, and let p
be a prime number splitting in F . Let P1 and P2 be the prime ideals of K =
F (ζp) over p. Then, the Stickelberger ideal SG annihilates (OK/π)

×/[O×
K ]π

if and only if there exists a unit ϵ ∈ O×
K satisfying

ϵ ≡ 1 mod P1 and ϵ ≡ −1 mod P2. (7)

Proof. For brevity, put X = (OK/π)
×/[O×

K ]π. We have

(OK/π)
× = (OK/P1)

× ⊕ (OK/P2)
× = F×

p ⊕ F×
p .

The Galois group G = Gal(K/F ) fixes the prime ideal Pi, and it acts trivially
on (OK/Pi)

×. The augmentation ιG : ZG → Z maps both nG and θG,2 to
(p− 1)/2. Hence, we see from (2) that ιG maps the ideal SG ⊆ ZG onto the
ideal of Z generated by (p − 1)/2. Therefore, it follows that the condition
XSG = {0} is equivalent to

(OK/π)
×(p−1)/2 ⊆ [O×

K ]π.

¿From this, we obtain the assertion. □

Lemma 10 Let F = Q(
√
−d) be an imaginary quadratic field with a

square free positive integer d, and let p be a prime number splitting in F .
There exists a unit ϵ ∈ O×

K satisfying (7) in the following two cases.
(I) d = 1,
(II) d is a prime number with d ̸≡ 1 mod 4, and p ≡ 3 mod 4.

Proof. We first show the assertion for the case (II). Let E = F (
√
−p). It

is well known that the unit index QE of the imaginary abelian field E equals
2 by Hasse [7, p. 76]. We apply the classical argument used for showing
QE = 2. Let E+ = Q(

√
pd) be the maximal real subfield of E. Let Qd be the

prime ideal of E+ over the prime d ; (d) = Q2
d. ¿From the conditions on d and

p, we see that the class number of E+ is odd by genus theory. Hence, there
exist integers u, v ∈ Z such that u2 − v2pd = ±4d. Then, it follows that
u = u′d for some u′ ∈ Z and that η = (u′√−d+v

√
−p)/2 is a unit of OE. Let

P1 and P2 be the prime ideals of K over p. Let a ∈ Z be an integer such that√
−d ≡ a mod P1. We see that

√
−d ≡ −a mod P2 by taking the conjugate

over Q. Therefore, it follows that η ≡ b mod P1 and η ≡ −b mod P2 for
some integer b with 1 ≤ b ≤ p−1. Let δb = 1+ζp+ · · ·+ζb−1

p be a cyclotomic
unit in K. Then, since δb ≡ b mod π, the unit ϵ = η/δb satisfies the condition
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(7).
For the case (I), we can similarly show the assertion by taking ϵ =

√
−1

times a suitable cyclotomic unit of K. □

Proof of Theorem 1. By Lemma 6, we do not need the conditional result
of Weinberger [27] mentioned before. The imaginary quadratic fields F with
hF = 1 were determined by Stark [24]. Those with hF = 2 were determined
independently by Stark [25] and Montgomery and Weinberger [23], and those
with hF = 4 were determined by Arno [1]. By genus theory, we can easily
pick out those with ClF = (Z/2)⊕2 from Arno’s result. Using these results
and Lemmas 1 and 2, we obtain the following lists.

Lemma 11 An imaginary quadratic field F = Q(
√
−d) satisfies (A5)

only when d is one of the following:

(i) 1, 3, 11, 19; (ii) 6, 51, 91; (iii) 21.

Lemma 12 An imaginary quadratic field F = Q(
√
−d) satisfies (A7)

only when d is one of the following:

(i) 3, 19; (ii) 5, 6, 10, 13, 115, 187; (iii) 33, 195.

Lemma 13 An imaginary quadratic field F = Q(
√
−d) satisfies (A11)

only when d is one of the following:

(i) 2, 7, 19, 43; (ii) 6, 10, 13, 35, 51, 123, 403;

(iii) 21, 30, 57, 85, 195, 435, 483.

In the above lists, those F or d in the first groups satisfy hF = 1, those in
the second groups hF = 2, and those in the last groups ClF = (Z/2)⊕2,
respectively. In the following, let K = F (ζp) and E be the intermediate field
of K/F with [E : F ] = 2. Let ρ be a generator of G = Gal(K/F ). By (2),
SG is generated by nG = 1+ρ+ · · ·+ρ(p−1)/2−1. All the following calculation
were done using KASH.

The case p = 5. We checked that the natural map ClF → ClE is not
trivial when d = 6, 51, 91 or 21. Hence, by Lemma 4, F does not satisfy
(A5) for these d. When d = 1 or 3, we have ClK = {0}. When d = 1, we
see that ClK(π)

SG = {0} by Lemmas 9 and 10. When d = 3, we checked
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ClK(π)
SG = {0} by explicitly finding a system of fundamental units of K.

Hence, by Proposition 5, F satisfies (A5) for d = 1 or 3. When d = 11
(resp. 19), we see that ClK = Z/2 (resp. Z/4) and ClSG

K = {0}. We chose
an ideal A of K such that the class [A] generates the cyclic group ClK . We
checked that a generator α of the principal ideal A1+ρ is not congruent to a
unit modulo π. Hence, by Proposition 5, F does not satisfy (A5) for d = 11
or 19.

The case p = 7. We checked that the natural map ClF → ClE is not
trivial when d = 6, 33, 195. Hence, by Lemma 5, F does not satisfy (A7) for
these d. For d = 5, 10, 115, 187, the 2-part of ClK is nontrivial and cyclic,
and hence F does not satisfy (A7) by Lemma 7. When d = 13, we found
that ClK = Z/2⊕3 ⊕ Z/3 and ClSG

K ̸= {0}, and hence F does not satisfy
(A7). When d = 19, we found that ClK = Z/3 and ClSG

K = {0}. We checked
that F does not satisfy (A7) in this case similarly to the case where p = 5
and d = 11, 19. Finally, when d = 3, we found that ClK = {0}, and that
ClK(π)

SG = {0} by Lemmas 9 and 10. Hence, F satisfies (A7) for d = 3.
The case p = 11. For d = 10, 35, 21, 30, 57, 85, 195, 435 or 483, we found

that the natural map ClF → ClE is not trivial. Hence, by Lemma 5, F does
not satisfy (A11) for these d. For d = 6, 13, 51, 123 or 403, we have hE = 2.
Hence, by Lemma 7, F does not satisfy (A11) for these d. For d = 43, we
have hE = 3, and F does not satisfy (A11) by Lemma 8. Let us deal with
the remaining case where d = 2, 7 or 19. In these cases, we have hE = 1.
In stead of the field K = F (ζ11), we use the subfield N = F (cos 2π/11). We
have hN = 5 for d = 2 or 7, and hN = 55 for d = 19. Let A be an ideal of N .
If F satisfies (A11), then AnGOK = αOK for some α ∈ K× congruent modulo
π to a unit of K. Taking the norm to N , it follows that A2nG = βON . Here,
β = NK/Nα and is congruent to a unit of N modulo π. For these three d,
we chose a nontrivial ideal A of N and checked that A2nG is a principal ideal
of ON and that its generator is not congruent to a unit of N modulo π after
computing a system of fundamental units of N . Therefore, there exists no
imaginary quadratic field satisfying (A11). □

Observation/Question. Let p be a prime number. As usual, we put
p̃ = 4 (resp. p) when p = 2 (resp. p ≥ 3). We have seen that for the first five
p̃, the number of imaginary quadratic fields F satisfying (Ap) is 4, 3, 2, 1 and
0, respectively. What is the next term or a general term of this (arithmetic
!) progression ?
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Remark 2. We can generalize Lemma 3 as follows. For a number field
F , let µF be the group of roots of unity in F . Let K/F be a finite cyclic
extension with both K and F CM-fields. Assume that the following three
conditions are satisfied:

(i) [K : F ] is even.
(ii) µF = {±1} and

√
−1 /∈ µK , and

(iii) There exists a prime ideal ℘ of F over an odd prime number p such
that the ramification index of ℘ at F/Q is odd and ℘ is ramified at the
quadratic intermediate field E of K/F .
By the last condition, we can write E = F (

√
a) for some a ∈ F× with

ord℘(a) = 1. Then, we can show that the exponent of the kernel of the
natural map Cl−F → Cl−K divides 2 by an argument exactly similar to the
proof of Lemma 3 using a inplace of p∗.

Remark 3. If all imaginary abelian fields K of degree 2(p − 1) for

which Cl
2h−

p

K = {0} are determined, it would be possible to determine all real
quadratic fields satisfying (Ap) for small primes p by virtue of Proposition 6.

4 Subfields of the p-cyclotomic field

In this section, we deal with subfields of the p-cyclotomic field Q(ζp). The
following is an immediate consequence of Proposition 1. A more general
statement is given in [9, Proposition 3.4]

Proposition 8 Let p be an odd prime number. An imaginary subfield F
of Q(ζp) satisfies (Ap) if and only if p = 3 and F = Q(ζ3).

In the following, we summarize what is known or conjectured for the real
case. Let O′

F = OF [1/p] be the ring of p-integers of F . We say that F
satisfies the condition (A′

p) when for any Γ-extension N/F , O′
N is cyclic over

the group ring O′
FΓ. It is known that F satisfies (Ap) only when it satisfies

(A′
p) (see [16, Lemma 7]). The condition (A′

p) is more easy to handle with
than the difficult one (Ap), and many results on (A′

p) are already obtained
in [14, 16, 17, 18]. Let K = F (ζp). For instance, it is known that F satisfies
(A′

p) if h
′
K = 1, where h′

K is the class number of the Dedekind domain O′
K .

Let K = Q(ζp), and hp the class number of K. As the unique prime
ideal of OK over p is principal, we have hp = h′

K . It is well known that
hp = 1 if and only if p ≤ 19 (cf. [26, Theorem 11.1]). Hence, when p ≤ 19,
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any subfield F of K = Q(ζp) satisfies (A
′
p). When p ≥ 23, we proposed the

following conjecture in [18].

Conjecture 1. Let p be a prime number with p ≥ 23, and F a subfield
of Q(ζp) with F ̸= Q. If [F : Q] > 2 or p ≡ 1 mod 4, then F does not satisfy
the condition (A′

p) except for the case where p = 29 and [F : Q] = 2 or 7.

We have seen in [18, Proposition 4] that the conjecture is valid when
23 ≤ p ≤ 499 or when [K : F ] ≤ 4 or = 6. A reason that the case p = 29 is
exceptional is that h−

p is power of 2 if and only if p ≤ 19 or p = 29 by Horie
[10]. When p = 29 and [F : Q] = 2 or 7, it is known that F satisfies (A′

p)
([18, Proposition 4(II)]). In [16, Theorem 1], we determined all imaginary
subfields F of Q(ζp) satisfying (A′

p), and gave an affirmative answer to the
conjecture for the imaginary case. In [17], we showed the following assertion
for the real case.

Proposition 9 ([17, Proposition 1]). Let p ≥ 23. Assume that q ∥ h−
p

for some odd prime number q. Then, any real subfield F of Q(ζp) with F ̸= Q
does not satisfy (A′

p). (Hence, it does not satisfy (Ap).)

The assumption in this assertion is satisfied for all primes p with 23 ≤
p < 210 except for the case where p = 29, 31 or 41 by the tables in [26],
Lehmer and Masley [19] and Yamamura [28].

Now, we can say that we have enough reasons to propose the following:

Conjecture 2. A real subfield F of Q(ζp) with F ̸= Q does not satisfy
(Ap) except for the case where p ≤ 19, or p = 29 and [F : Q] = 2, 7.

Among the exceptional cases in Conjecture 2, we have checked that
Q(

√
5) satisfies (A5) and that Q(cos 2π/7) does not satisfy (A7) by com-

puter calculation based upon Theorem 2. The difficult point is that the
locally free class group Cl0(OFΓ) is very complicated when F/Q is ramified
at p.
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