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Abstract

Let p = 2°"1¢g + 1 be an odd prime number with 2 { ¢. Let K be
the imaginary cyclic field of conductor p and degree 2¢*1. We denote
by F the imaginary quadratic subextension of the imaginary (2, 2)-
extension K (v/2)/K* with F # K. We determine the Galois module
structure of the 2-part of the class group of F.

1 Introduction

For a prime number p with p = 3 mod 4, let F' = Q(1/—2p). It is well known
that the 2-part of the class group of F'is nontrivial and cyclic by Gauss, and
that 4|hp if and only if p splits in Q(v/2) by Rédei and Reichardt [11]. Here,
hy denotes the class number of a number field N. There are many other
papers and related results on the 2-part of the class group of a quadratic
field such as [1, 6, 8, 9, 12, 15, 19].

In this paper, we give a generalization of the classical results on F' =
Q(v/—2p) for a general odd prime number p and an imaginary cyclic field
of conductor 8p and 2-power degree. Let e > 0 be a fixed integer, and let
p = 2°71g+1 denote an odd prime number with 2 { g. Let K be the imaginary
subfield of the pth cyclotomic field Q(,) of degree 2¢T!. Here, for an integer
m, (n denotes a primitive mth root of unity. The extension K (v/2)/K™ is an
imaginary (2, 2)-extension, where N* denotes the maximal real subfield of
a CM-field N. We denote by F = F, the imaginary quadratic intermediate
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field of K (v/2)/K* with F # K. We see that F is an imaginary cyclic field
of conductor 8p and degree 2°T!. For the case e = 0, we have K = Q(,/—p)
and F = Q(y/—2p). For a number field N, Cly and Ay = Cly(2) denote the
ideal class group of N in the usual sense and its 2-part, respectively. When
N is a CM-field, let C'l be the kernel of the norm map Cly — Cly+ and
hy = |Cly| the relative class number of N. Further, Ay denotes the 2-part
of Cly. We have Ay = AZ because F'* = Kt and hg+ is odd (Washington
[13, Theorem 10.4(b)]). We study the Galois module structure of Az.

Let I' = Gal(F/Q) and R = Z,[I'|, where Z, is the ring of 2-adic integers.
We choose and fix a generator v of the cyclic group I" of order 2¢*1. Let A =
Zs[[T]] be the power series ring with indeterminate 7'. In all what follows,
we identify R with A/((14T)*"" —1) by the correspondence 7 <+ 1+ T

2€+1

R=A/((1+T)"" —-1).

The group Az is naturally regarded as a module over R, and hence as a
module over A. The following assertion generalizes the classical fact due to

Gauss that Ar is a cyclic group when e = 0 and F = Q(/—2p).

Proposition 1. Under the above setting, the class group Ar is cyclic over
A.

We denote by Ir (C A) the annihilator of the cyclic A-module Az, so
that we have an isomorphism Az = A/Ix of A-modules. We see that

1+T)* +1€elr (1)

because the complex conjugation v** = (1+7)* acts on Ar = A7 via (—1)-
multiplication. When e = 0, the classical fact due to Gauss implies that
Ir =(2°,2+T) with s = orda(hx) and hence

Ar 2 AJ(2°, 2+ T) (2 2/2°). (2)

Here, ordy(x) denotes the additive 2-adic valuation on Q with ords(2) = 1.

We generalize the fact (2) for the case e > 1. To state our results, we
need some more preliminaries. We denote by £ = &, the smallest nonnegative
integer with 0 < k& < e + 1 such that p splits completely in Q(2"/%"™"). By
definition, we have k, = 0 if and only if p splits completely in Q(2"/2).
Thus, when e = 0, the condition x, = 0 is nothing but the one in the old
paper [11] which we mentioned at the beginning of this section. On the value
Kp, the following assertion holds.



Lemma 1. When e = 1, we have k, = e +1 = 2. When e > 2, for each ¢
with 0 <i <e (resp. i = e+ 1), there exist infinitely many (resp. no) prime
numbers p such that p = 2°"1q + 1 with 21 q and k, = 1.

We have ordy(hr) = ords(hz) as hg+ is odd. On the value ords(hr), we
show the following assertion.

Proposition 2. (I) When e =1, we have ords(hz) = 1.

(IT) When e > 2 and k = k, > 1, we have ordy(hz) = 2¢7F+1,

(III) When k = 0, orda(hy) = 2°+ 1 = 5 for the case e = 2 and
orda(hz) > 2¢+ 2 for the case e > 3.

When e = 1, there is nothing to do on the structure of the class group
Az because of Proposition 2(I). So we let e > 2 in the following. When e > 2

and k, = 0, we put
ordy(hr)

and
a, = 2°s, —ordy(hr) and b, =2%(1—s,)+ orda(hr).

Here, [z] denotes the smallest integer > z. We easily see that s, > 2 by
Proposition 2(III) and that a, > 0, b, > 1 and a, + b, = 2°. Further, when
e =2, we have s, = 2, a, = 3 and b, = 1 by Proposition 2(III). The following
assertions on Az and its annihilator Iz are the main results of the paper.
They generalize the classical result (2).

Theorem 1. Lete > 2 and k = Kk, > 1. Then
Ir=(2,T*""), and hence Ar = (7/2)%* """
as abelian groups.
Theorem 2. Let e > 2 and k, = 0. Then
Ir = (2%, 2% 1T (1 4+T)% 4+ 1),

and hence
Ap = (2/207)0 & (2/20) % ®)

as abelian groups.



Corollary 1. Let e = 2 and k, = 0. Then
Ar =2 (Z/2)P o Z/4
as abelian groups.
For a finite abelian group A and an integer ¢t > 1, we denote by
r(A) = dimg, (271 A /2 A)

the 2'-rank of A. Here, Fy is the finite field with two elements. The fol-
lowing assertion is an immediate consequence of Theorems 1 and 2. It is
a generalization of the classical result of Rédei and Reichardt for the case
e=0.

Corollary 2. When e > 2, the 4-rank r4(Ar) is positive if and only if k, = 0.

Remark 1. In [17, 18], Yue generalized a result of Rédei [12] and gave a
formula for the 4-rank of the class group of a relative quadratic extension
E/F. 1t is possible to show Corollary 2 using his formula.

Remark 2. Let ¢ > 2. For x > 0, let P.(x) be the set of prime numbers
p=2"lq+1 <z with 2¢¢. We put

) e R | n(4r) >0
T P.(a)] |

We see that 6, = 27¢ from Corollary 2 and the Chebotarev density theorem.
When e = 0, this type of density results are already obtained for prime

numbers p such that (p = 3 mod 4 and) 2°|hr with s = 2, 3 and 4 by

Rédei-Reichardt [11], Morton [9] and Milovic [8], respectively.

This paper is organized as follows. In §2, we show Lemma 1 and Proposi-
tion 2. We show Theorems 1 and 2, respectively, in §3 and §4. Proposition 1
is shown in §5. In §6, we consider which unramified quadratic extension over
F extends to an unramified cyclic quartic extension. In §7, we give some
numerical data on ords(hz) and the class group Ar.



2 Proof of Proposition 2

Let p = 2°lg+ 1, K, F and £ = £, be as in §1. We begin by showing
Lemma 1 in §1.

Proof of Lemma 1. When e = 1 (and hence p = 5 mod 8), p does not split
in Q(v/2) and hence x, = ¢ + 1 = 2. Let us deal with the case e > 2. As
p = 1 mod 8, p splits in Q(v/2) and hence &, < e. Fixing i with 0 < i < e,
let k = Q(Caesr, 2/27). We put

L = k(Goese, 2277 Ly = k(Caerz), Lo = k(2Y*7).

We see that L is a (2, 2)-extension over k, and that L; and Ly are two of the
three quadratic intermediate fields of L/k. Let L3 be the third intermediate
field of L/k. By the Chebotarev density theorem, there exist infinitely many
prime ideals P of L3 which is degree one over Q and remains prime in the
quadratic extension L/Ls;. Let p = P N k. Then the prime ideal p of k
remains prime in Ly, Ly and splits in Ls. For the prime number p = p N Q,
we see that p =1+ 2°7'q with 21 ¢ and &, = 1. O

To show Proposition 2 on the class number hz, it suffices to deal with the
relative class number hr as hg+ is odd. We see that the unit index of our
imaginary abelian field F is 1 by Conner and Hurrelbrink [2, Lemma 13.5].
Then it follows from the class number formula [13, Theorem 4.17] that

h7 =2 x 1;[ (—%BW) : (4)

Here, § runs over the odd Dirichlet characters of conductor p and order 26+,
and 1 is the even Dirichlet character of conductor 8 and order 2. In the
following, we regard these characters to be Qs-valued, where Q, is a fixed
algebraic closure of the 2-adic rationals @Q,. Let w = wy be the Teichmiiller
character of conductor 4. We put O = O[d] = Zz[(ae+1]. Iwasawa constructed
a power series G, (1) in the power series ring O[[T] related to the 2-adic
L-function Ly(s, dw) by

1
Gso((L+4p)* —1) = §L2<S, dw) (5)
for s € Zy. The power series Gy, (1) also satisfies

Gon(—(1+4p)* — 1) = %LQ(S, Spw) (6)



for s € Zy. For (5) and (6), see Iwasawa [5, §6, Lemma 3] or [13, Theorem
7.10]. By a theorem of Ferrero and Washington ([13, Theorem 7.15]), we
have 2t Gs,. Then it follows that

Gouw(T) = P(T)u(T)

for some distinguished polynomial P(7T") € O[T] and a unit u(7") of O[[T]
from [13, Theorem 7.3]. The degree A, of P(T) is the Iwasawa lambda
invariant of the power series Gy,. It follows from (5), (6) and [13, Theorem
5.11] that

Goul0) = La(0, 6) = (1= 3(2))Bug

1 1—46(2)
= ——(1—={(3e+1)B —
(1= Gen) Brs x o= = (M)
and that
1 1 1
Gou(—2) = §L2(0; dpw) = _5(1 — 0Y(2))Bisy = —§B1¢w- (8)
Further, it is known that
1
5(1 - CQeJrl)Bl,g G OX. (9)

(See Hasse [3, Satz 32] or [4, Lemma 7].)
Lemma 2. On the lambda invariant X\,, we have

gorda(g+1)—-1 _ 1 fore=10
A = 7

2¢=t 1, fore>1. (10)

Proof. Let K, /K be the cyclotomic Zs-extension over K, and let A\ be the
Iwasawa lambda invariant of the ideal class group of K. The invariant Agx
equals 2°)\, by a theorem of Wiles [14, Theorem 6.2] (Iwasawa main conjec-
ture). On the other hand, it is an immediate consequence of the formula (II)
in Kida [7, §6] that A equals 2¢ times of the right-hand side of (10). Thus
we obtain the assertion. O

Lemma 3. Let D, be the decomposition field of the prime 2 in the cyclic
extension K/Q of degree 2°T1, and let i be an integer with 0 < i < e + 1.
Then the following three conditions are equivalent to each other.

(I) The value §(2) is a primitive 2'th root of unity.

(1) [D, : Q] = 2+,

(III) K, = 1.



Proof. As the character ¢ has order 27!, the equivalence (I) < (II) follows
immediately from the reciprocity law for Q(¢,)/Q. The condition (I) is equiv-
alent to the condition that the congruence 22" = 2 mod p has a solution
but (for the case i > 1) 42 """ = 2 mod p has no solution. We easily see
that the last condition is equivalent to s, = ¢. O

Proof of Proposition 2(I). Let e = 1. Then the power series Gy, is a unit
1
of O[[T]] by Lemma 2. Then it follows from (8) that §Bl,5¢ is a unit of O.

Therefore, we obtain the assertion from the class number formula (4). O

In the following, we assume that e > 2. Then the degree A, of P(T) is
positive by Lemma 2. By (7) and Lemma 3, we obtain the following:

Lemma 4. The polynomial P(T) is divisible by T if and only if k, = 0.

Proof of Proposition 2(II), (III). For an integer i > 0, we put m; = (oi+1 — 1.
Then 7, is a uniformizer of O = Zy[(ye+1]. First, let us show the assertion
(IT) for the case k = k, > 1. It follows from (7), (9) and Lemma 3 that

P(0) ~ Gs,(0) ~ v = o1/ Te.

Here, for elements = and y of QJ, we write # ~ y when z/y is a 2-adic unit.
We see that P(—2) ~ P(0) because P(T) € O[T] and P(0) ~ « is a divisor
of 2/m.. Hence, Gs,(—2) ~ P(—2) ~ «. Then we see from (4) and (8) that

h/; ~ 2 X (71',{71/7].6)26 ~ 2 % 2267ﬂ+1 % 271 _ 22&7#;4»1.

Next, we show the assertion (III) when x = 0 and e > 3. Then A\, >
3 by Lemma 2. It follows from Lemma 4 that P(T) = TQ(T) for some
distinguished polynomial Q(7") € O[T of degree A\, — 1 > 2. Since Q(—2) is
divisible by 7., it follows from (4) and (8) that hx is divisible by

2 x (—2)% x 72" ~ 2512,

Finally, we show (III) when x = 0 and e = 2. We have P(T) = T by
Lemmas 2 and 4. Then we obtain the assertion from (4) and (8). O



3 Proof of Theorem 1

First, we recall a formula for the number of “ambiguous” classes of a CM-
field. Let N be a CM-field. An ideal class ¢ € Cly is ambiguous when
¢’ = ¢, where J is the nontrivial automorphism of N over N* (the complex
conjugation). Let a(N) be the number of ambiguous classes of N. For a
number field L, we denote by O, and E;, = O the ring of integers and the
group of units of L, respectively. It is known that

2tN—1

[EN+ : EN+ ﬂN(NX)] ’ (11)

Here, ty is the number of prime divisors of N (finite or infinite) which are
ramified in NV, and N is the norm map form N to N*. For this formula, see
Yokoi [16] for example.

Q(N) = hN+ X

Lemma 5. The 2-rank r2(Az) equals 2¢ or 27"+ according as k = k, = 0
or k > 1.

Proof. We use the above formula for N = F noting that F* = K*. We
put r = ro(Az) for brevity. Let Br be the ambiguous classes in Ax. Then
b(F) = |Bx| is nothing but the 2-part of a(F). We see that a class ¢ in Ar
is ambiguous (¢/ = ¢) if and only if ¢ = 1 as A = AZ. It follows that
b(F) =2". As F is a CM-field, every element z € N (F*) is totally positive.
It follows that

(BEg+)? C Eg+ NN(F*) C {e € Ex+ ‘ e is totally positive}.

As hg is odd ([13, Theorem 10.4(b)]), we see from [2, Corollary 13.10] that a
unit € of K" is totally positive if and only if € is a square in K. Therefore,
Er+ NN (F*) coincides with (Fg+)?, and hence

[Ex+ @ Ex+ NN(F7)] =22 (12)

by the Dirichlet unit theorem. The primes of K™ = F* ramified in F are
those over p or 2 and the infinite prime divisors. By Lemma 3, we see that
20+ is a product of 2¢ (resp. 2¢7"*1) prime ideals of K when x = 0 (resp.
k > 1). Hence, it follows that

tr=1+2¢42°0r 1+ 26t 4 2¢

€

according as k = 0 or k > 1. Accordingly, we obtain from (11) and (12) that
b(F) =22 or 22" Thus we have shown that r = 2¢ or 2¢~"*! according
ask=0ork>1. L]



Proof of Theorem 1. By Proposition 2(II) and Lemma 5, we see that the
abelian group Az is isomorphic to 27" copies of Z/2. The assertion on
the annihilator Ix of the cyclic A-module Ax follows from this. Il

4 Proof of Theorem 2

Let e > 2 and k = k, = 0. We already know that
T’Q(A].‘) =2° and A]: = A;—

The proof of Theorem 2 is based upon Propositions 1, 2 and the following
purely algebraic assertion.

Proposition 3. Let A be a cyclic module over R = A/((1+ T)* — 1) with
a generator g, and let I, be the annihilator of the A-module A (so that

A= AN/I4 as A-modules). Assume that ¢ =g and that
A= (Z)2)% @ (zZ/4)%™
withm >1 and 1 <0+ m < 2°. Then we have £ +m = 2¢ and
Iy=(4,2T™, (1+T)* +1).

Proof of Theorem 2. We write

s

Ar = Az =P (z/2)"

i=1
for some integers s > 1 and t; > 0 (1 <i < s) with t; > 1. As ry(Ar) = 2°,
these integers s and ¢; satisfy

S

Z t, =2° and i it; = orda(hr).

i=1 =1

Further, we see that s > 2 since ords(hz) > 2¢ + 1 by Proposition 2(III).
Assume that ¢; > 1 for some 7 with ¢ < s — 2. Then it follows that

AL = 2/ & (2/4)™



and ¢, +t, < 2°. This is impossible by Proposition 3 because Ar = A% is
cyclic over A by Proposition 1. Therefore, we observe that

Ar = (2271 @ (2/2)°

for some integers a and b such that a > 0,6 > 1, a+b = 2° and (s—1)a+sb =
ordy(hx). We see that s = s,, a = a, and b = b, from the last four conditions,
and thus we obtain the second assertion (3) of Theorem 2. Further, by
Proposition 3, the annihilator of A2~ equals (4, 27%, (1 + T)* +1). It
follows from this and (1) that the ideal I of A generated by 27, 22=1T% and
(1+T)* + 1 is contained in the annihilator Ir of Az. Since A/I = Az as
abelian groups by (3), we obtain I = Ir. O

Proof of Proposition 3. As m > 1, the module A? is nontrivial. Let J; be
the annihilator of the A-module A% = A - g% As A? is isomorphic to (Z/2)®™
as abelian groups, we see that J; = (2, 7™) and that

A2 = (g%) x (") x - x (g, (13)

Here, (x) denotes the cyclic group generated by *. It follows that ¢?7" =1
and hence 27" € I4. The assumption g°° = g~! implies that (1+7)% +1 €
I,. As the ideal I4 contains 4 and 27™, it follows that

m—1
T =2+ Z 2a;T" mod I, (14)

=1

for some a; € Z. Let 5 A be the elements z of A with 22 = 1. Then, noting
that A% C 4 A, we put B = 3A/A%. We see from J; = (2, T™) that m is the
smallest integer with g7 € 54, and hence that the A-module B is generated
by the class [¢7"]. Further, B = (Z/2)®* as abelian groups. Let J, be the
annihilator of B. Then, from the above, we observe that

Jy={aeA| g e A’}=(2T

and that ¢7""" € A2 = A - g% Because of (13), this implies that
m—1
T+ = Z 26, T mod 14
i=0

10



for some b; € Z. Now assume that m + ¢ < 2°. Then, as 2T € [,, we

observe that
m—1

7% = 7T =N " 96T mod Iy
i=1
for some ¢; € Z with 1 <i <m — 1. It follows from (14) that
m—1
2 = Z 2d;T" mod 14

i=1

for some d; € Z, and hence
m—1
2f(T) € Iy with f(T)=1-Y dT"
i=1

This implies that 2 € I4 because the polynomial f(7') is a unit of A. However,
this contradicts the assumption m > 1. Thus we obtain m + ¢ = 2°.

Let I = (4,27T™, (1 +T)* +1). We already know that I C I4. Using
m+{ = 2°, we see that A/I is isomorphic to A as an abelian group. Therefore,
we obtain /4 = 1. O

5 Proof of Proposition 1

In this section, we construct the class field corresponding to Ax/A% and show
Proposition 1. We begin with the following lemma.

Lemma 6. Let k be a totally real number field of degree n. Assume that
the narrow class number hy of k is odd and that the prime number 2 splits
completely in k; 2 = £, ---£,. Then the natural map

n

1 By = (0p/40,) = D (0r/£3)"

j=1
induced by reduction modulo 4 is surjective.

Proof. We write E = E}, for brevity. By the second assumption, we see that
(Or/40),)* is isomorphic to (Z/2Z)®" as an abelian group. If a unit € € F
satisfies ¢ = 1 mod 4, then k(y/€)/k is unramified outside the infinite prime

11



divisors by [13, Exercise 9.3]. As hy, is odd, this implies that e is a square
in k. It follows that ker o = E%. Now, we see that ¢ is surjective because
E/E? is isomorphic to (Z/2Z)®" as an abelian group by the Dirichlet unit
theorem. ]

Let p = 2°71g+1 be an odd prime number, and we use the same notation
as in the previous sections. We choose and fix a totally negative element d

of K* with (d, 2) =1 and K = K*(v/d). We have
d = u? mod 4 (15)

for some u € K by [13, Exercise 9.3] since K /K™ is unramified at the primes
over 2. Let p be the unique prime ideal of KT over p. We put h™ = hg+ for
brevity. In addition to (15), we may as well assume that

(d) ="

since h™ is odd and K/K™ is ramified only at p (and the infinite prime
divisors). We see that F = K*(v/2d) from the definition of F and that the
quadratic extension F(v/2) = F(v/d) over F is unramified.

For brevity, we put

r=2° or 2¢7H!

according as k = 0 or k = K, > 1. By Lemma 5, r = ro(Ar). Let k be the
intermediate field of the cyclic extension K+/Q with [k : Q] = r. The cyclic
group Gal(k/Q) of order r is generated by p = 7|, where « is the generator
of I' = Gal(F/Q) fixed in §1. By Lemma 3, the prime 2 splits completely
in k. We choose a prime ideal q of k over 2. We put q; = q”H for each
1 <4 <r, so that we have a decomposition 2 =q; ---¢q, in k. As hg is odd,
the narrow class number Ay, of k is odd. Therefore, by Lemma 6, we can
choose a generator w = w; € k* of the principal ideal q’f+ such that

lemodq% and w=1modgq; for2<j<r.

We put w; = wP' ™" for each i with 1 <1 <r. Then we see that for each 1,

o = I mod g7, and w; =1modq; for any j # 1, (16)
and that
oM = wy - w, (17)



As F = K*(v2d) and h* is odd, F(,/w;) = F(y/w;/2""d). Therefore, we
see from (15) and (16) that

L=F(Jw |1<i<r)

is an unramified extension over F by [13, Exercise 9.3].

We put X = F*/(F*)? for brevity, and let V be the subgroup of X
generated by r elements [w;] (1 < i < r). Here, [z] denotes the class in
X containing an element x € F*. These groups are naturally regarded as
vector spaces over Fs.

Lemma 7. Under the above setting, the demension of the vector space V
equals r.

Proof. We put
T = wa
i=1

with 0 < s; < 1. If x is a square in F, then we see that x or 2dz is a square
in K+ because € K+ and F = K*(v/2d). If x is a square in K, then
[1,(9:Ox+)"" = is a square of an ideal of K. Tt follows that s; = 0 since h*
is odd and the prime ideal g; remains prime in K+ /k. If 2dx is a square in
K+, then we obtain K = K*(v/d) = K*(v/2x). However, this is impossible
because K/K™* is ramified at o but K+ (v/2z)/K™ is unramified at p. Thus
we obtain the assertion. O

From Lemmas 5 and 7, we obtain:

Proposition 4. Under the above setting, the unramified extension L/F cor-
responds to the class group Ar/A%.

Proof of Proposition 1. The group X is naturally regarded as a module over
R = 7Z,[I']. Then V is a cyclic R-submodule of X generated by [w]. By
Proposition 4, the class group Az/A% is isomorphic to the Galois group
G = Gal(L/F) via the reciprocity law map which is compatible with the
action of I'. The Kummer pairing

GxV = i (g, [v]) = (g,v) = (Vo)

is nondegenerate and satisfies (¢°,v°) = (g,v) for g € G, [v] € V and § € T..
Therefore, we obtain an isomorphism

G = H = Hom(V, )

13



of R-modules. Here, § € I acts on f € H by the rule f*([v]) = f([v]° ). As
V is cyclic over R, so is the Galois group G. Therefore, we see that Az/A%
is cyclic over R from the above. This implies that Ar is cyclic over R by
Nakayama’s lemma ([13, Lemma 13.16]). O

6 Unramified cyclic quartic extension

In this section, we consider which unramified quadratic extension over JF
extends to an unramified cyclic quartic extension when r4(Az) > 1. We use
the same notation as in the previous sections. In the following, we let e > 2
and k = x, = 0 in view of Corollary 2. Let I'" = Gal(K*/Q), p = yx+ and
RT =TFy[['t]. Let W be the subgroup of X = (KT)*/((K™)*)? generated
by the classes [w;] in X. The group X+ is naturally regarded as a module
over R*, and W as an R*-submodule of X . In this section, we use I'", R*
and W instead of I', R and V. This is justified because the inclusion map
K+ =F*t — F induces an isomorphism between the abelian groups W and
V because of Lemma 7. The module W is cyclic over R™ with a generator [w]
similary to V. Further, it follows from Lemma 7 that dimp, W = dimp, R =
2¢. Hence, the cyclic R™-module W is also free over R™. Namely we have

W =R"[w] = R". (18)

This is the advantage of using W in place of V.
Let U; be the principal ideal of R™ generated by (1 + p)’ for 0 <7 < 2¢.
We have a filtration

U():RDUlD"'DUQe_lDUQE. (19)
We see that
2¢—1
1+ => p(=Tr) and (1+p)* =0. (20)
=0
It follows that
UQe_l = {O,TI'} and Uge = {0} (21)

Lemma 8. The ideals U; are all the ideals of Rt and dimg, U; = 2° — i.

14



Proof. We see from (20) that the homomorphism ¢ : Fo[T] — R™ sending
1+ T to p induces an isomorphism

Fo[T)/(T*) = R*.
From this we obtain the assertion. O
For each 5 with 0 < j < 2° letting ¢+ = 2° — j, we put
Lj=F(Vw* |z el).
From (17) with r = 2¢, (19) and (21), we have
Ly=FCL =F(2)C-C Ly, C Ly =L.

Proposition 5. Let e > 2 and x, = 0.
(I) When ry(Ar) = 5 with 1 < j < 2° an unramified quadratic extension
E/F extends to an unramified quartic cyclic extension if and only if E C L;.
(I1) The unramified extension F(v/2)/F extends to an unramfied quartic

cyclic extension.

Proof. First we show the assertion (I). Let E;/F and Ey/F be quadratic
extensions contained in L with E; # Es, and let E53/F be the third quadratic
extension in the (2,2)-extension E)FEs/F. We see that if both of E; and
F5 extend to unramified quartic cyclic extensions, then E3 has the same
property. Let N; be the composite of all unramified quadratic extensions
E/F which extends to an unramfied quartic cyclic extension. Then, from
the above and j = ry(Az), we see that Gal(N;/F) = (Z/2)®. Further, we
see that N; is Galois over Q. Let WW; be the submodule of W such that

N = F(J/3 | [o] € W)).

As N; is Galois over Q, W; is an R*-submodule of W with dimg,(W;) = j.
Then we see from (18) and Lemma 8 that W; = U;W = U;-[w] with ¢ = 2°—j.
Therefore, we obtain N; = L;. Thus we have shown the assertion (I). The
assertion (II) follows from (I) because r4(Ax) > 1 by Corollary 2. O

7 Numerical data

In the previous sections, we were working with a fixed e and various prime
numbers p of the form p = 2¢1g + 1. In this section, we deal with various e

15



and various prime numbers p < 10° (or 107), and we put e, = ordy(p—1) — 1
so that p = 2%*1q + 1 with 2 { q. Further, F = F,, k = k,, Ar and hz are
the same as in §1. In Table 1, we give the number of prime numbers p with
(ep, Kip) = (e, k) for p < 10°. For instance, on the row for e = 4, we see that
the ratio 155 : 150 : 312 : 621 : 1218 is approximately equal to 1 : 1:2: 4 : 8.
This is because of the Chebotarev density theorem on the ray class group of
M, = Q(Cyet1) corresponding to the abelian extension M, (2Y/2)/M,.

Table 1: The number of prime numbers with (ep, k) = (e, k).

N 1 2 | 3 | 4 | 56| 7[8]9]total
0 19669 | 19653 0 0 0 0 0 0 | 0| 0 |39322
1 0 0 19623 0 0 0 0 0 0 | 0 | 19623
2 2471 | 2426 | 4894 0 0 0 0 0 0] 0] 9791
3 600 609 1206 | 2434 0 0 0 0 0| 0 | 4849
4 155 150 312 | 621 | 1218 | O 0 0 | 0| 0 | 2456
) 38 34 69 174 | 294 | 624 | O 0 0| 0 | 1233
6 11 12 24 29 71 1149 |1 322 | O 0] 0 618
7 0 1 3 11 22 41 | 83 | 146 | 0 | O 307
8 3 1 1 0 7 18 | 18 | 33 | 72| O 153
9 0 0 1 2 2 2 2 10 | 19 | 34 72

. "lslals5|6|7|8]9]10|11 1213141516 |17 | total
10 1{of1|1|1|5{7(15(0 | 0[0]0]0|0]O 31
11 ojoj1r{2y1}1|1(4(15,0]0|0|0]0]O0 25
12 ojoj0{0j1y0|j0{ 12 ;50| 0]0|0]|O0 9
13 ojo00j0j0f0y0j0 1712|070 0]|O0 4
14 oo00{0;j0400j0|170(0|1]0]0]|O0 2
15 oj01{0;0400{00;0]0]0]0]0]O0 1
16 o,o0{0;j0400j{0J0;]0|0]JO0O]O0]O0]O0 0
17 ojoj{ojojojojof{o0f{o0jO0O|O]O0O]O0O]O0O]|1 1

In the following, we let e, > 2 because 2||hr when e, = 1 by Proposition
2(I). When «, > 1, we have Ar = (Z/2)%" with r = 2%~ "+ and the 4-
rank r4(Ax) = 0 by Theorem 1. On the other hand, when x, = 0, we have
r4(Ax) > 0 by Corollary 2. Therefore, we see from Table 1 that there are
3278 = 2471 + 600 + 155 + 38 + 11 + 3 prime numbers p with r4(Ar) > 0 in

the range p < 10°.

We already know the precise structure of Ar when x, = 0 and e, = 2
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by Corollary 1. When e, > 3, to know the structure of Az, we need to
know the value ¢, = ords(hz) in view of Theorem 2. By Proposition 2(III),
t, > 272 We computed t, for p < 10% with e, > 3 and k, = 0 by the
class number formula (4). Let n.; be the number of prime numbers p with
(€ps Kp, tp) = (€,0,t) in the range. Let p.; be the minimum prime number p
satistying (e,, kp, tp) = (e,0,t). In Table 2, we give n.; and p.; for each e
and t.

Table 2: The exponent of 2-class number and the minimum primes.

€ t ne,t pe,t € t ne,t pe,t € t ne,t pe,t
31101309 | 337 | 4|18 | 8 | 2593 || 5|34 | 18 | 15809
11 | 112 | 43441 19 | 31 | 26849 35| 8 | 131009
12| 80 | 39761 20 | 21 | 10657 36 | 1 | 868801
13 | 49 | 28657 21 | 13 | 68449 37| 6 | 83777
14 | 25 | 12049 22| 8 | 138977 38| 4 | 92737
151 5 | 79889 23| 2 | H98817 39| 1 |470081
16 | 11 | 34961 24| 6 31649
17| 7 | 44497 25| 1 | 476513
18 | 2 | 57457 26 | 2 | 572321
€ t ne,t pe,t € t ne,t pe,t
6|66| 6 | 266369 || 8 |258 | 3 | 115201
67 | 2 | 195457
68 | 2 | 299393
701 1 | 710273

By Theorem 2, the 8-rank r3(Az) is positive if and only if ¢ > 2¢T!. Tn
Table 2, we see that the condition ¢ > 2°T! is satisfied only when (e, t) =
(3,17) or (3,18) and that there are 9 = 7+2 prime numbers with rg(Ax) > 0
in the range p < 10°. These prime numbers are p = 44497, 79697, 103409,
162257, 717841, 797201 and 921841 with (e, t) = (3,17), and p = 57457 and
875377 with (e, t) = (3,18). By Theorem 2, we have

Ar =2 (Z/D" D Z/8 or Ar=(Z/4)* @ (Z/8)%.

according as t = 17 or 18.

Further, we computed t, for p < 10" with e, = 3 and x, = 0. Let s,
be the number of prime numbers with (e,, kp,t,) = (3,0,1) in the range. In
Table 3, we give ny,, p3; and the structure of Az for each ¢.
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Table 3: The exponent of 2-class number (p < 107).
t | ng, P3t Ar

10 [ 2610 | 337 (Z2)2)%° & (2/4)%?
11| 1164 | 43441 | (Z)2)™ @ (Z/4)®3
12| 707 | 39761 | (Z/2)%* @ (Z/4)%*
13| 321 | 28657 | (Z)2)™ @ (Z/4)®°
14 | 194 | 12049 | (Z/2)®* @ (Z/4)%

15| 94 | 79880 | (Z/2) & (Z/4)%
16 | 75 | 34961 (7.)4)%8
17| 37 | 44497 (Z]40)®" @ (Z/8)

18| 7 57457 | (Z/4)% @ (7./8)%2
19 | 10 | 2347409 | (Z/4H)® @ (Z/8)%3
20 | 3 | 3295249 | (Z/4)%* @ (Z/8)%*
21 | 3 |3238801 | (Z/4)®% @ (Z/8)®°
22 | 1 | 5897329 | (Z/4)®* @ (Z/8)%°
26 | 1 | 6765169 | (Z/8)% @ (Z/16)%?

Among 5227 prime numbers, there is only one prime number such that
the 16-rank of Ar is positive.
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