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Abstract

Let p = 2e+1q + 1 be an odd prime number with 2 ∤ q. Let K be
the imaginary cyclic field of conductor p and degree 2e+1. We denote
by F the imaginary quadratic subextension of the imaginary (2, 2)-
extension K(

√
2)/K+ with F ̸= K. We determine the Galois module

structure of the 2-part of the class group of F .

1 Introduction

For a prime number p with p ≡ 3 mod 4, let F = Q(
√
−2p). It is well known

that the 2-part of the class group of F is nontrivial and cyclic by Gauss, and
that 4|hF if and only if p splits in Q(

√
2) by Rédei and Reichardt [11]. Here,

hN denotes the class number of a number field N . There are many other
papers and related results on the 2-part of the class group of a quadratic
field such as [1, 6, 8, 9, 12, 15, 19].

In this paper, we give a generalization of the classical results on F =
Q(

√
−2p) for a general odd prime number p and an imaginary cyclic field

of conductor 8p and 2-power degree. Let e ≥ 0 be a fixed integer, and let
p = 2e+1q+1 denote an odd prime number with 2 ∤ q. LetK be the imaginary
subfield of the pth cyclotomic field Q(ζp) of degree 2

e+1. Here, for an integer
m, ζm denotes a primitive mth root of unity. The extension K(

√
2)/K+ is an

imaginary (2, 2)-extension, where N+ denotes the maximal real subfield of
a CM-field N . We denote by F = Fp the imaginary quadratic intermediate
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field of K(
√
2)/K+ with F ̸= K. We see that F is an imaginary cyclic field

of conductor 8p and degree 2e+1. For the case e = 0, we have K = Q(
√
−p)

and F = Q(
√
−2p). For a number field N , ClN and AN = ClN(2) denote the

ideal class group of N in the usual sense and its 2-part, respectively. When
N is a CM-field, let Cl−N be the kernel of the norm map ClN → ClN+ and
h−N = |Cl−N | the relative class number of N . Further, A−

N denotes the 2-part
of Cl−N . We have AF = A−

F because F+ = K+ and hK+ is odd (Washington
[13, Theorem 10.4(b)]). We study the Galois module structure of AF .

Let Γ = Gal(F/Q) and R = Z2[Γ], where Z2 is the ring of 2-adic integers.
We choose and fix a generator γ of the cyclic group Γ of order 2e+1. Let Λ =
Z2[[T ]] be the power series ring with indeterminate T . In all what follows,
we identify R with Λ/((1 + T )2

e+1 − 1) by the correspondence γ ↔ 1 + T :

R = Λ/((1 + T )2
e+1 − 1).

The group AF is naturally regarded as a module over R, and hence as a
module over Λ. The following assertion generalizes the classical fact due to
Gauss that AF is a cyclic group when e = 0 and F = Q(

√
−2p).

Proposition 1. Under the above setting, the class group AF is cyclic over
Λ.

We denote by IF (⊆ Λ) the annihilator of the cyclic Λ-module AF , so
that we have an isomorphism AF ∼= Λ/IF of Λ-modules. We see that

(1 + T )2
e

+ 1 ∈ IF (1)

because the complex conjugation γ2
e
= (1+T )2

e
acts on AF = A−

F via (−1)-
multiplication. When e = 0, the classical fact due to Gauss implies that
IF = (2s, 2 + T ) with s = ord2(hF) and hence

AF ∼= Λ/(2s, 2 + T ) (∼= Z/2s). (2)

Here, ord2(∗) denotes the additive 2-adic valuation on Q with ord2(2) = 1.
We generalize the fact (2) for the case e ≥ 1. To state our results, we

need some more preliminaries. We denote by κ = κp the smallest nonnegative
integer with 0 ≤ κ ≤ e+ 1 such that p splits completely in Q(21/2

e−κ+1
). By

definition, we have κp = 0 if and only if p splits completely in Q(21/2
e+1

).
Thus, when e = 0, the condition κp = 0 is nothing but the one in the old
paper [11] which we mentioned at the beginning of this section. On the value
κp, the following assertion holds.
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Lemma 1. When e = 1, we have κp = e + 1 = 2. When e ≥ 2, for each i
with 0 ≤ i ≤ e (resp. i = e+1), there exist infinitely many (resp. no) prime
numbers p such that p = 2e+1q + 1 with 2 ∤ q and κp = i.

We have ord2(hF) = ord2(h
−
F) as hK+ is odd. On the value ord2(hF), we

show the following assertion.

Proposition 2. (I) When e = 1, we have ord2(hF) = 1.
(II) When e ≥ 2 and κ = κp ≥ 1, we have ord2(hF) = 2e−κ+1.
(III) When κ = 0, ord2(hF) = 2e + 1 = 5 for the case e = 2 and

ord2(hF) ≥ 2e + 2 for the case e ≥ 3.

When e = 1, there is nothing to do on the structure of the class group
AF because of Proposition 2(I). So we let e ≥ 2 in the following. When e ≥ 2
and κp = 0, we put

sp =

⌈
ord2(hF)

2e

⌉
and

ap = 2esp − ord2(hF) and bp = 2e(1− sp) + ord2(hF).

Here, ⌈x⌉ denotes the smallest integer ≥ x. We easily see that sp ≥ 2 by
Proposition 2(III) and that ap ≥ 0, bp ≥ 1 and ap + bp = 2e. Further, when
e = 2, we have sp = 2, ap = 3 and bp = 1 by Proposition 2(III). The following
assertions on AF and its annihilator IF are the main results of the paper.
They generalize the classical result (2).

Theorem 1. Let e ≥ 2 and κ = κp ≥ 1. Then

IF = (2, T 2e−κ+1

), and hence AF ∼= (Z/2)⊕2e−κ+1

as abelian groups.

Theorem 2. Let e ≥ 2 and κp = 0. Then

IF = (2sp , 2sp−1T bp , (1 + T )2
e

+ 1),

and hence
AF ∼= (Z/2sp−1)⊕ap ⊕ (Z/2sp)⊕bp (3)

as abelian groups.
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Corollary 1. Let e = 2 and κp = 0. Then

AF ∼= (Z/2)⊕3 ⊕ Z/4

as abelian groups.

For a finite abelian group A and an integer t ≥ 1, we denote by

rt(A) = dimF2(2
t−1A/2tA)

the 2t-rank of A. Here, F2 is the finite field with two elements. The fol-
lowing assertion is an immediate consequence of Theorems 1 and 2. It is
a generalization of the classical result of Rédei and Reichardt for the case
e = 0.

Corollary 2. When e ≥ 2, the 4-rank r4(AF) is positive if and only if κp = 0.

Remark 1. In [17, 18], Yue generalized a result of Rédei [12] and gave a
formula for the 4-rank of the class group of a relative quadratic extension
E/F . It is possible to show Corollary 2 using his formula.

Remark 2. Let e ≥ 2. For x > 0, let Pe(x) be the set of prime numbers
p = 2e+1q + 1 < x with 2 ∤ q. We put

θe = lim
x→∞

|{p ∈ Pe(x)
∣∣ r4(AF) > 0}|

|Pe(x)|
.

We see that θe = 2−e from Corollary 2 and the Chebotarev density theorem.
When e = 0, this type of density results are already obtained for prime

numbers p such that (p ≡ 3 mod 4 and) 2s|hF with s = 2, 3 and 4 by
Rédei-Reichardt [11], Morton [9] and Milovic [8], respectively.

This paper is organized as follows. In §2, we show Lemma 1 and Proposi-
tion 2. We show Theorems 1 and 2, respectively, in §3 and §4. Proposition 1
is shown in §5. In §6, we consider which unramified quadratic extension over
F extends to an unramified cyclic quartic extension. In §7, we give some
numerical data on ord2(hF) and the class group AF .
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2 Proof of Proposition 2

Let p = 2e+1q + 1, K, F and κ = κp be as in §1. We begin by showing
Lemma 1 in §1.

Proof of Lemma 1. When e = 1 (and hence p ≡ 5 mod 8), p does not split
in Q(

√
2) and hence κp = e + 1 = 2. Let us deal with the case e ≥ 2. As

p ≡ 1 mod 8, p splits in Q(
√
2) and hence κp ≤ e. Fixing i with 0 ≤ i ≤ e,

let k = Q(ζ2e+1 , 21/2
e−i+1

). We put

L = k(ζ2e+2 , 21/2
e−i+2

), L1 = k(ζ2e+2), L2 = k(21/2
e−i+2

).

We see that L is a (2, 2)-extension over k, and that L1 and L2 are two of the
three quadratic intermediate fields of L/k. Let L3 be the third intermediate
field of L/k. By the Chebotarev density theorem, there exist infinitely many
prime ideals P of L3 which is degree one over Q and remains prime in the
quadratic extension L/L3. Let ℘ = P ∩ k. Then the prime ideal ℘ of k
remains prime in L1, L2 and splits in L3. For the prime number p = ℘ ∩Q,
we see that p = 1 + 2e+1q with 2 ∤ q and κp = i.

To show Proposition 2 on the class number hF , it suffices to deal with the
relative class number h−F as hK+ is odd. We see that the unit index of our
imaginary abelian field F is 1 by Conner and Hurrelbrink [2, Lemma 13.5].
Then it follows from the class number formula [13, Theorem 4.17] that

h−F = 2×
∏
δ

(
−1

2
B1,δψ

)
. (4)

Here, δ runs over the odd Dirichlet characters of conductor p and order 2e+1,
and ψ is the even Dirichlet character of conductor 8 and order 2. In the
following, we regard these characters to be Q̄2-valued, where Q̄2 is a fixed
algebraic closure of the 2-adic rationals Q2. Let ω = ω4 be the Teichmüller
character of conductor 4. We put O = O[δ] = Z2[ζ2e+1 ]. Iwasawa constructed
a power series Gδω(T ) in the power series ring O[[T ]] related to the 2-adic
L-function L2(s, δω) by

Gδω((1 + 4p)s − 1) =
1

2
L2(s, δω) (5)

for s ∈ Z2. The power series Gδω(T ) also satisfies

Gδω(−(1 + 4p)s − 1) =
1

2
L2(s, δψω) (6)
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for s ∈ Z2. For (5) and (6), see Iwasawa [5, §6, Lemma 3] or [13, Theorem
7.10]. By a theorem of Ferrero and Washington ([13, Theorem 7.15]), we
have 2 ∤ Gδω. Then it follows that

Gδω(T ) = P (T )u(T )

for some distinguished polynomial P (T ) ∈ O[T ] and a unit u(T ) of O[[T ]]
from [13, Theorem 7.3]. The degree λp of P (T ) is the Iwasawa lambda
invariant of the power series Gδω. It follows from (5), (6) and [13, Theorem
5.11] that

Gδω(0) =
1

2
L2(0, δω) = −1

2
(1− δ(2))B1,δ

= −1

2
(1− ζ2e+1)B1,δ ×

1− δ(2)

1− ζ2e+1

(7)

and that

Gδω(−2) =
1

2
L2(0, δψω) = −1

2
(1− δψ(2))B1,δψ = −1

2
B1,δψ. (8)

Further, it is known that

1

2
(1− ζ2e+1)B1,δ ∈ O×. (9)

(See Hasse [3, Satz 32] or [4, Lemma 7].)

Lemma 2. On the lambda invariant λp, we have

λp =

{
2ord2(q+1)−1 − 1, for e = 0
2e−1 − 1, for e ≥ 1.

(10)

Proof. Let K∞/K be the cyclotomic Z2-extension over K, and let λK be the
Iwasawa lambda invariant of the ideal class group of K∞. The invariant λK
equals 2eλp by a theorem of Wiles [14, Theorem 6.2] (Iwasawa main conjec-
ture). On the other hand, it is an immediate consequence of the formula (II)
in Kida [7, §6] that λK equals 2e times of the right-hand side of (10). Thus
we obtain the assertion.

Lemma 3. Let Dp be the decomposition field of the prime 2 in the cyclic
extension K/Q of degree 2e+1, and let i be an integer with 0 ≤ i ≤ e + 1.
Then the following three conditions are equivalent to each other.

(I) The value δ(2) is a primitive 2ith root of unity.
(II) [Dp : Q] = 2e−i+1.
(III) κp = i.
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Proof. As the character δ has order 2e+1, the equivalence (I) ⇔ (II) follows
immediately from the reciprocity law for Q(ζp)/Q. The condition (I) is equiv-

alent to the condition that the congruence x2
e−i+1 ≡ 2 mod p has a solution

but (for the case i ≥ 1) y2
e−(i−1)+1 ≡ 2 mod p has no solution. We easily see

that the last condition is equivalent to κp = i.

Proof of Proposition 2(I). Let e = 1. Then the power series Gδω is a unit

of O[[T ]] by Lemma 2. Then it follows from (8) that
1

2
B1,δψ is a unit of O.

Therefore, we obtain the assertion from the class number formula (4).

In the following, we assume that e ≥ 2. Then the degree λp of P (T ) is
positive by Lemma 2. By (7) and Lemma 3, we obtain the following:

Lemma 4. The polynomial P (T ) is divisible by T if and only if κp = 0.

Proof of Proposition 2(II), (III). For an integer i ≥ 0, we put πi = ζ2i+1 − 1.
Then πe is a uniformizer of O = Z2[ζ2e+1 ]. First, let us show the assertion
(II) for the case κ = κp ≥ 1. It follows from (7), (9) and Lemma 3 that

P (0) ∼ Gδω(0) ∼ α = πκ−1/πe.

Here, for elements x and y of Q̄×
2 , we write x ∼ y when x/y is a 2-adic unit.

We see that P (−2) ∼ P (0) because P (T ) ∈ O[T ] and P (0) ∼ α is a divisor
of 2/πe. Hence, Gδω(−2) ∼ P (−2) ∼ α. Then we see from (4) and (8) that

h−F ∼ 2× (πκ−1/πe)
2e ∼ 2× 22

e−κ+1 × 2−1 = 22
e−κ+1

.

Next, we show the assertion (III) when κ = 0 and e ≥ 3. Then λp ≥
3 by Lemma 2. It follows from Lemma 4 that P (T ) = TQ(T ) for some
distinguished polynomial Q(T ) ∈ O[T ] of degree λp − 1 ≥ 2. Since Q(−2) is
divisible by πe, it follows from (4) and (8) that h−F is divisible by

2× (−2)2
e × π2e

e ∼ 22
e+2.

Finally, we show (III) when κ = 0 and e = 2. We have P (T ) = T by
Lemmas 2 and 4. Then we obtain the assertion from (4) and (8).
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3 Proof of Theorem 1

First, we recall a formula for the number of “ambiguous” classes of a CM-
field. Let N be a CM-field. An ideal class c ∈ ClN is ambiguous when
cJ = c, where J is the nontrivial automorphism of N over N+ (the complex
conjugation). Let a(N) be the number of ambiguous classes of N . For a
number field L, we denote by OL and EL = O×

L the ring of integers and the
group of units of L, respectively. It is known that

a(N) = hN+ × 2tN−1

[EN+ : EN+ ∩N (N×)]
. (11)

Here, tN is the number of prime divisors of N+ (finite or infinite) which are
ramified in N , and N is the norm map form N to N+. For this formula, see
Yokoi [16] for example.

Lemma 5. The 2-rank r2(AF) equals 2e or 2e−κ+1 according as κ = κp = 0
or κ ≥ 1.

Proof. We use the above formula for N = F noting that F+ = K+. We
put r = r2(AF) for brevity. Let BF be the ambiguous classes in AF . Then
b(F) = |BF | is nothing but the 2-part of a(F). We see that a class c in AF
is ambiguous (cJ = c) if and only if c2 = 1 as AF = A−

F . It follows that
b(F) = 2r. As F is a CM-field, every element x ∈ N (F×) is totally positive.
It follows that

(EK+)2 ⊆ EK+ ∩N (F×) ⊆ {ϵ ∈ EK+

∣∣ ϵ is totally positive}.

As hK is odd ([13, Theorem 10.4(b)]), we see from [2, Corollary 13.10] that a
unit ϵ of K+ is totally positive if and only if ϵ is a square in K+. Therefore,
EK+ ∩N (F×) coincides with (EK+)2, and hence

[EK+ : EK+ ∩N (F×)] = 22
e

(12)

by the Dirichlet unit theorem. The primes of K+ = F+ ramified in F are
those over p or 2 and the infinite prime divisors. By Lemma 3, we see that
2OK+ is a product of 2e (resp. 2e−κ+1) prime ideals of K+ when κ = 0 (resp.
κ ≥ 1). Hence, it follows that

tF = 1 + 2e + 2e or 1 + 2e−κ+1 + 2e

according as κ = 0 or κ ≥ 1. Accordingly, we obtain from (11) and (12) that
b(F) = 22

e
or 22

e−κ+1
. Thus we have shown that r = 2e or 2e−κ+1 according

as κ = 0 or κ ≥ 1.
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Proof of Theorem 1. By Proposition 2(II) and Lemma 5, we see that the
abelian group AF is isomorphic to 2e−κ+1 copies of Z/2. The assertion on
the annihilator IF of the cyclic Λ-module AF follows from this.

4 Proof of Theorem 2

Let e ≥ 2 and κ = κp = 0. We already know that

r2(AF) = 2e and AF = A−
F .

The proof of Theorem 2 is based upon Propositions 1, 2 and the following
purely algebraic assertion.

Proposition 3. Let A be a cyclic module over R = Λ/((1 + T )2
e − 1) with

a generator g, and let IA be the annihilator of the Λ-module A (so that

A ∼= Λ/IA as Λ-modules). Assume that gγ
2e

= g−1 and that

A ∼= (Z/2)⊕ℓ ⊕ (Z/4)⊕m

with m ≥ 1 and 1 ≤ ℓ+m ≤ 2e. Then we have ℓ+m = 2e and

IA = (4, 2Tm, (1 + T )2
e

+ 1).

Proof of Theorem 2. We write

AF = A−
F
∼=

s⊕
i=1

(Z/2i)ti

for some integers s ≥ 1 and ti ≥ 0 (1 ≤ i ≤ s) with ts ≥ 1. As r2(AF) = 2e,
these integers s and ti satisfy

s∑
i=1

ti = 2e and
s∑
i=1

iti = ord2(hF).

Further, we see that s ≥ 2 since ord2(hF) ≥ 2e + 1 by Proposition 2(III).
Assume that ti ≥ 1 for some i with i ≤ s− 2. Then it follows that

A2s−2

F
∼= (Z/2)⊕ts−1 ⊕ (Z/4)⊕ts
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and ts−1 + ts < 2e. This is impossible by Proposition 3 because AF = A−
F is

cyclic over Λ by Proposition 1. Therefore, we observe that

AF ∼= (Z/2s−1)⊕a ⊕ (Z/2s)⊕b

for some integers a and b such that a ≥ 0, b ≥ 1, a+b = 2e and (s−1)a+sb =
ord2(hF). We see that s = sp, a = ap and b = bp from the last four conditions,
and thus we obtain the second assertion (3) of Theorem 2. Further, by
Proposition 3, the annihilator of A2s−2

F equals (4, 2T bp , (1 + T )2
e
+ 1). It

follows from this and (1) that the ideal I of Λ generated by 2sp , 2sp−1T bp and
(1 + T )2

e
+ 1 is contained in the annihilator IF of AF . Since Λ/I ∼= AF as

abelian groups by (3), we obtain I = IF .

Proof of Proposition 3. As m ≥ 1, the module A2 is nontrivial. Let J1 be
the annihilator of the Λ-module A2 = Λ · g2. As A2 is isomorphic to (Z/2)⊕m
as abelian groups, we see that J1 = (2, Tm) and that

A2 = ⟨g2⟩ × ⟨g2T ⟩ × · · · × ⟨g2Tm−1⟩. (13)

Here, ⟨∗⟩ denotes the cyclic group generated by ∗. It follows that g2T
m
= 1

and hence 2Tm ∈ IA. The assumption gγ
2e

= g−1 implies that (1+T )2
e
+1 ∈

IA. As the ideal IA contains 4 and 2Tm, it follows that

T 2e ≡ 2 +
m−1∑
i=1

2aiT
i mod IA (14)

for some ai ∈ Z. Let 2A be the elements x of A with x2 = 1. Then, noting
that A2 ⊆ 2A, we put B = 2A/A

2. We see from J1 = (2, Tm) that m is the
smallest integer with gT

m ∈ 2A, and hence that the Λ-module B is generated
by the class [gT

m
]. Further, B ∼= (Z/2)⊕ℓ as abelian groups. Let J2 be the

annihilator of B. Then, from the above, we observe that

J2 = {α ∈ Λ
∣∣ gTmα ∈ A2} = (2, T ℓ)

and that gT
m+ℓ ∈ A2 = Λ · g2. Because of (13), this implies that

Tm+ℓ ≡
m−1∑
i=0

2biT
i mod IA
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for some bi ∈ Z. Now assume that m + ℓ < 2e. Then, as 2Tm ∈ IA, we
observe that

T 2e = Tm+ℓT 2e−(m+ℓ) ≡
m−1∑
i=1

2ciT
i mod IA

for some ci ∈ Z with 1 ≤ i ≤ m− 1. It follows from (14) that

2 ≡
m−1∑
i=1

2diT
i mod IA

for some di ∈ Z, and hence

2f(T ) ∈ IA with f(T ) = 1−
m−1∑
i=1

diT
i.

This implies that 2 ∈ IA because the polynomial f(T ) is a unit of Λ. However,
this contradicts the assumption m ≥ 1. Thus we obtain m+ ℓ = 2e.

Let I = (4, 2Tm, (1 + T )2
e
+ 1). We already know that I ⊆ IA. Using

m+ℓ = 2e, we see that Λ/I is isomorphic to A as an abelian group. Therefore,
we obtain IA = I.

5 Proof of Proposition 1

In this section, we construct the class field corresponding to AF/A
2
F and show

Proposition 1. We begin with the following lemma.

Lemma 6. Let k be a totally real number field of degree n. Assume that
the narrow class number h̃k of k is odd and that the prime number 2 splits
completely in k; 2 = L1 · · ·Ln. Then the natural map

φ : Ek → (Ok/4Ok)
× =

n⊕
j=1

(Ok/L
2
j)

×

induced by reduction modulo 4 is surjective.

Proof. We write E = Ek for brevity. By the second assumption, we see that
(Ok/4Ok)

× is isomorphic to (Z/2Z)⊕n as an abelian group. If a unit ϵ ∈ E
satisfies ϵ ≡ 1 mod 4, then k(

√
ϵ)/k is unramified outside the infinite prime
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divisors by [13, Exercise 9.3]. As h̃k is odd, this implies that ϵ is a square
in k. It follows that kerφ = E2. Now, we see that φ is surjective because
E/E2 is isomorphic to (Z/2Z)⊕n as an abelian group by the Dirichlet unit
theorem.

Let p = 2e+1q+1 be an odd prime number, and we use the same notation
as in the previous sections. We choose and fix a totally negative element d
of K+ with (d, 2) = 1 and K = K+(

√
d). We have

d ≡ u2 mod 4 (15)

for some u ∈ K+ by [13, Exercise 9.3] sinceK/K+ is unramified at the primes
over 2. Let ℘ be the unique prime ideal of K+ over p. We put h+ = hK+ for
brevity. In addition to (15), we may as well assume that

(d) = ℘h
+

since h+ is odd and K/K+ is ramified only at ℘ (and the infinite prime
divisors). We see that F = K+(

√
2d) from the definition of F and that the

quadratic extension F(
√
2) = F(

√
d) over F is unramified.

For brevity, we put
r = 2e or 2e−κ+1

according as κ = 0 or κ = κp ≥ 1. By Lemma 5, r = r2(AF). Let k be the
intermediate field of the cyclic extension K+/Q with [k : Q] = r. The cyclic
group Gal(k/Q) of order r is generated by ρ = γ|k where γ is the generator
of Γ = Gal(F/Q) fixed in §1. By Lemma 3, the prime 2 splits completely
in k. We choose a prime ideal q of k over 2. We put qi = qρ

i−1
for each

1 ≤ i ≤ r, so that we have a decomposition 2 = q1 · · · qr in k. As hK is odd,
the narrow class number h̃k of k is odd. Therefore, by Lemma 6, we can
choose a generator w = w1 ∈ k× of the principal ideal qh

+

1 such that

w

2h+
≡ 1 mod q21 and w ≡ 1 mod q2j for 2 ≤ j ≤ r.

We put wi = wρ
i−1

for each i with 1 ≤ i ≤ r. Then we see that for each i,

wi
2h+

≡ 1 mod q2i , and wi ≡ 1 mod q2j for any j ̸= i, (16)

and that
2h

+

= w1 · · ·wr. (17)
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As F = K+(
√
2d) and h+ is odd, F(

√
wi) = F(

√
wi/2h

+d). Therefore, we
see from (15) and (16) that

L = F(
√
wi

∣∣ 1 ≤ i ≤ r)

is an unramified extension over F by [13, Exercise 9.3].
We put X = F×/(F×)2 for brevity, and let V be the subgroup of X

generated by r elements [wi] (1 ≤ i ≤ r). Here, [x] denotes the class in
X containing an element x ∈ F×. These groups are naturally regarded as
vector spaces over F2.

Lemma 7. Under the above setting, the demension of the vector space V
equals r.

Proof. We put

x =
r∏
i=1

wsii

with 0 ≤ si ≤ 1. If x is a square in F , then we see that x or 2dx is a square
in K+ because x ∈ K+ and F = K+(

√
2d). If x is a square in K+, then∏

i(qiOK+)h
+si is a square of an ideal of K+. It follows that si = 0 since h+

is odd and the prime ideal qi remains prime in K+/k. If 2dx is a square in
K+, then we obtain K = K+(

√
d) = K+(

√
2x). However, this is impossible

because K/K+ is ramified at ℘ but K+(
√
2x)/K+ is unramified at ℘. Thus

we obtain the assertion.

From Lemmas 5 and 7, we obtain:

Proposition 4. Under the above setting, the unramified extension L/F cor-
responds to the class group AF/A

2
F .

Proof of Proposition 1. The group X is naturally regarded as a module over
R = Z2[Γ]. Then V is a cyclic R-submodule of X generated by [w]. By
Proposition 4, the class group AF/A

2
F is isomorphic to the Galois group

G = Gal(L/F) via the reciprocity law map which is compatible with the
action of Γ. The Kummer pairing

G× V → µ2; (g, [v]) → ⟨g, v⟩ = (
√
v)g−1

is nondegenerate and satisfies ⟨gδ, vδ⟩ = ⟨g, v⟩ for g ∈ G, [v] ∈ V and δ ∈ Γ.
Therefore, we obtain an isomorphism

G ∼= H = Hom(V, µ2)

13



of R-modules. Here, δ ∈ Γ acts on f ∈ H by the rule f δ([v]) = f([v]δ
−1
). As

V is cyclic over R, so is the Galois group G. Therefore, we see that AF/A
2
F

is cyclic over R from the above. This implies that AF is cyclic over R by
Nakayama’s lemma ([13, Lemma 13.16]).

6 Unramified cyclic quartic extension

In this section, we consider which unramified quadratic extension over F
extends to an unramified cyclic quartic extension when r4(AF) ≥ 1. We use
the same notation as in the previous sections. In the following, we let e ≥ 2
and κ = κp = 0 in view of Corollary 2. Let Γ+ = Gal(K+/Q), ρ = γ|K+ and
R+ = F2[Γ

+]. Let W be the subgroup of X+ = (K+)×/((K+)×)2 generated
by the classes [wi] in X

+. The group X+ is naturally regarded as a module
over R+, and W as an R+-submodule of X+. In this section, we use Γ+, R+

and W instead of Γ, R and V . This is justified because the inclusion map
K+ = F+ → F induces an isomorphism between the abelian groups W and
V because of Lemma 7. The moduleW is cyclic over R+ with a generator [w]
similary to V . Further, it follows from Lemma 7 that dimF2 W = dimF2 R

+ =
2e. Hence, the cyclic R+-module W is also free over R+. Namely we have

W = R+ · [w] ∼= R+. (18)

This is the advantage of using W in place of V .
Let Ui be the principal ideal of R+ generated by (1 + ρ)i for 0 ≤ i ≤ 2e.

We have a filtration

U0 = R ⊃ U1 ⊃ · · · ⊃ U2e−1 ⊃ U2e . (19)

We see that

(1 + ρ)2
e−1 =

2e−1∑
t=0

ρt (:= Tr) and (1 + ρ)2
e

= 0. (20)

It follows that
U2e−1 = {0,Tr} and U2e = {0}. (21)

Lemma 8. The ideals Ui are all the ideals of R+ and dimF2 Ui = 2e − i.
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Proof. We see from (20) that the homomorphism φ : F2[T ] → R+ sending
1 + T to ρ induces an isomorphism

F2[T ]/(T
2e) ∼= R+.

From this we obtain the assertion.

For each j with 0 ≤ j ≤ 2e, letting i = 2e − j, we put

Lj = F(
√
wx

∣∣ x ∈ Ui).

From (17) with r = 2e, (19) and (21), we have

L0 = F ⊂ L1 = F(
√
2) ⊂ · · · ⊂ L2e−1 ⊂ L2e = L.

Proposition 5. Let e ≥ 2 and κp = 0.
(I) When r4(AF) = j with 1 ≤ j ≤ 2e, an unramified quadratic extension

E/F extends to an unramified quartic cyclic extension if and only if E ⊆ Lj.
(II) The unramified extension F(

√
2)/F extends to an unramfied quartic

cyclic extension.

Proof. First we show the assertion (I). Let E1/F and E2/F be quadratic
extensions contained in L with E1 ̸= E2, and let E3/F be the third quadratic
extension in the (2, 2)-extension E1E2/F . We see that if both of E1 and
E2 extend to unramified quartic cyclic extensions, then E3 has the same
property. Let Nj be the composite of all unramified quadratic extensions
E/F which extends to an unramfied quartic cyclic extension. Then, from
the above and j = r4(AF), we see that Gal(Nj/F) ∼= (Z/2)⊕j. Further, we
see that Nj is Galois over Q. Let Wj be the submodule of W such that

Nj = F(
√
v
∣∣ [v] ∈ Wj).

As Nj is Galois over Q, Wj is an R
+-submodule of W with dimF2(Wj) = j.

Then we see from (18) and Lemma 8 thatWj = UiW = Ui ·[w] with i = 2e−j.
Therefore, we obtain Nj = Lj. Thus we have shown the assertion (I). The
assertion (II) follows from (I) because r4(AF) ≥ 1 by Corollary 2.

7 Numerical data

In the previous sections, we were working with a fixed e and various prime
numbers p of the form p = 2e+1q + 1. In this section, we deal with various e
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and various prime numbers p < 106 (or 107), and we put ep = ord2(p−1)−1
so that p = 2ep+1q + 1 with 2 ∤ q. Further, F = Fp, κ = κp, AF and hF are
the same as in §1. In Table 1, we give the number of prime numbers p with
(ep, κp) = (e, κ) for p < 106. For instance, on the row for e = 4, we see that
the ratio 155 : 150 : 312 : 621 : 1218 is approximately equal to 1 : 1 : 2 : 4 : 8.
This is because of the Chebotarev density theorem on the ray class group of
Me = Q(ζ2e+1) corresponding to the abelian extension Me(2

1/2e+1
)/Me.

Table 1: The number of prime numbers with (ep, κp) = (e, κ).
HHHHHHe

κ
0 1 2 3 4 5 6 7 8 9 total

0 19669 19653 0 0 0 0 0 0 0 0 39322
1 0 0 19623 0 0 0 0 0 0 0 19623
2 2471 2426 4894 0 0 0 0 0 0 0 9791
3 600 609 1206 2434 0 0 0 0 0 0 4849
4 155 150 312 621 1218 0 0 0 0 0 2456
5 38 34 69 174 294 624 0 0 0 0 1233
6 11 12 24 29 71 149 322 0 0 0 618
7 0 1 3 11 22 41 83 146 0 0 307
8 3 1 1 0 7 18 18 33 72 0 153
9 0 0 1 2 2 2 2 10 19 34 72

HHHHHHe
κ

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 total

10 1 0 1 1 1 5 7 15 0 0 0 0 0 0 0 31
11 0 0 1 2 1 1 1 4 15 0 0 0 0 0 0 25
12 0 0 0 0 1 0 0 1 2 5 0 0 0 0 0 9
13 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 4
14 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2
15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

In the following, we let ep ≥ 2 because 2∥hF when ep = 1 by Proposition
2(I). When κp ≥ 1, we have AF ∼= (Z/2)⊕r with r = 2ep−κp+1 and the 4-
rank r4(AF) = 0 by Theorem 1. On the other hand, when κp = 0, we have
r4(AF) > 0 by Corollary 2. Therefore, we see from Table 1 that there are
3278 = 2471 + 600 + 155 + 38 + 11 + 3 prime numbers p with r4(AF) > 0 in
the range p < 106.

We already know the precise structure of AF when κp = 0 and ep = 2
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by Corollary 1. When ep ≥ 3, to know the structure of AF , we need to
know the value tp = ord2(hF) in view of Theorem 2. By Proposition 2(III),
tp ≥ 2ep+2. We computed tp for p < 106 with ep ≥ 3 and κp = 0 by the
class number formula (4). Let ne,t be the number of prime numbers p with
(ep, κp, tp) = (e, 0, t) in the range. Let pe,t be the minimum prime number p
satisfying (ep, κp, tp) = (e, 0, t). In Table 2, we give ne,t and pe,t for each e
and t.

Table 2: The exponent of 2-class number and the minimum primes.
e t ne,t pe,t e t ne,t pe,t e t ne,t pe,t
3 10 309 337 4 18 85 2593 5 34 18 15809

11 112 43441 19 31 26849 35 8 131009
12 80 39761 20 21 10657 36 1 868801
13 49 28657 21 13 68449 37 6 83777
14 25 12049 22 8 138977 38 4 92737
15 5 79889 23 2 598817 39 1 470081
16 11 34961 24 6 31649
17 7 44497 25 1 476513
18 2 57457 26 2 572321

e t ne,t pe,t e t ne,t pe,t
6 66 6 266369 8 258 3 115201

67 2 195457
68 2 299393
70 1 710273

By Theorem 2, the 8-rank r8(AF) is positive if and only if t > 2e+1. In
Table 2, we see that the condition t > 2e+1 is satisfied only when (e, t) =
(3, 17) or (3, 18) and that there are 9 = 7+2 prime numbers with r8(AF) > 0
in the range p < 106. These prime numbers are p = 44497, 79697, 103409,
162257, 717841, 797201 and 921841 with (e, t) = (3, 17), and p = 57457 and
875377 with (e, t) = (3, 18). By Theorem 2, we have

AF ∼= (Z/4)⊕7 ⊕ Z/8 or AF ∼= (Z/4)⊕6 ⊕ (Z/8)⊕2.

according as t = 17 or 18.
Further, we computed tp for p < 107 with ep = 3 and κp = 0. Let n′

3,t

be the number of prime numbers with (ep, κp, tp) = (3, 0, t) in the range. In
Table 3, we give n′

3,t, p3,t and the structure of AF for each t.
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Table 3: The exponent of 2-class number (p < 107).
t n′

3,t p3,t AF
10 2610 337 (Z/2)⊕6 ⊕ (Z/4)⊕2

11 1164 43441 (Z/2)⊕5 ⊕ (Z/4)⊕3

12 707 39761 (Z/2)⊕4 ⊕ (Z/4)⊕4

13 321 28657 (Z/2)⊕3 ⊕ (Z/4)⊕5

14 194 12049 (Z/2)⊕2 ⊕ (Z/4)⊕6

15 94 79889 (Z/2)⊕ (Z/4)⊕7

16 75 34961 (Z/4)⊕8

17 37 44497 (Z/4)⊕7 ⊕ (Z/8)
18 7 57457 (Z/4)⊕6 ⊕ (Z/8)⊕2

19 10 2347409 (Z/4)⊕5 ⊕ (Z/8)⊕3

20 3 3295249 (Z/4)⊕4 ⊕ (Z/8)⊕4

21 3 3238801 (Z/4)⊕3 ⊕ (Z/8)⊕5

22 1 5897329 (Z/4)⊕2 ⊕ (Z/8)⊕6

26 1 6765169 (Z/8)⊕6 ⊕ (Z/16)⊕2

Among 5227 prime numbers, there is only one prime number such that
the 16-rank of AF is positive.
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