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Abstract

Let p be an odd prime number and 2¢T! be the highest power of
2 dividing p — 1. For 0 < n < e, let k, be the real cyclic field of
conductor p and degree 2. For a certain imaginary quadratic field
Lo, we put L, = Lgk,. For 0 <n < e —1, let F,, be the imaginary
quadratic subextension of the imaginary (2, 2)-extension Ly, 1 /k, with
Fn # Lpy1. We study the Galois module structure of the 2-part of
the ideal class group of the imaginary cyclic field F,,. This generalizes
a classical result of Rédei and Reichardt for the case n = 0.

1 Introduction

Let e > 2 be a fixed integer, and let p = 2°71¢ + 1 be a prime number with
21 q. For each 0 < n < e+ 1, we denote by k, the subfield of of the pth
cyclotomic field Q(¢,) of degree 2". Here, for an integer m > 2, (,, denotes
a primitive mth root of unity. We denote by P the set of prime numbers ¢
satisfying

<§> — 1 and £=+1mod 8. (1.1)

Let Lo = Q(v/=2), Q(v/2) or Q(v/—=2¢) for £ € P, and put L, = Lok,. For
each 0 < n <e, L,y1/k, is a (2,2)-extension with quadratic subextensions
L,.1 and k, 1. The subject of this paper is the third quadratic subextension
Fnof L1 /k,. Tt is a cyclic field of degree 2", whose conductor is 8p or 8p/
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according as Ly = Q(v/%2) or Q(v/—2¢). When n = 0, we have accordingly
Fo = Q(v/E2p) or Q(v/—2pf). The cyclic field F, is imaginary when Lg
is an imaginary quadratic field and 0 < n < e — 1 or when Ly = Q(\/ﬁ)
and n = e. For a number field N, hy and Ay denote the class number and
the 2-part of the ideal class group Cly of N in the usual sense, respectively.
For a CM field N, let Cly be the kernel of the norm map Cly — Cly+,
and let hyy, = |Cly| be the relative class number and A} the 2-part of Cly,
respectively. Here, NT is the maximal real subfield of N. When N = F,, is
imaginary, we put h, = hy, h, = hy, A, = Ay and A, = A}, for brevity.
Since F, = k, and the class number hy, is odd (Washington [15, Theorem
10.4]), we see that

ordy(hy,) = ordy(h,) and A, = A,

n?’

where ordsy(x) is the 2-adic additive valuation on Q with ords(2) = 1. The
main purpose of this paper is to study the Galois module structure of the
class group A, for those n where F, is imaginary. When n = 0, it is well
known that

A= Z/2 or Z)20Z)2 (1.2)

with j > 2 according as Ly = Q(v/—2) or Q(v/—2¢), which is due to Rédei
and Reichardt [13]. We generalize this result for the case n > 1. There are
many other results on the 2-part of the class group of Fy or other quadratic
fields such as [1, 7, 9, 11, 16].

To state our results, let us introduce some notation. Let I',, = Gal(F,,/Q)
and R,, = Zy[I',], where Z, is the ring of 2-adic integers. We fix a generator
v of the cyclic group T, of order 2", Let A = Z[[T]] be the 2-adic
power series ring with indeterminate 7. We identify the group ring R, with
A/((1+T)*"" —1) by the correspondence v, > 1+ T

R, =A/((1+T)*" —1).

The class group A, is naturally regarded as a module over R,, and hence
as a module over A. We see that (1 + 7)%" + 1 annihilates the A-module
A, =A,.

The class number h,, is always even when Ly = Q(v/—2¢) (and 0 < n <

e — 1) by Proposition 1.1 in the below. We define an integer h,, by

hp =h, or — (1.3)



according as Ly = Q(v*2) or Q(v/—2¢). There are many cases where
ords(h,) > 2™ + 1. For instance, this inequality holds when n = 0 by (1.2).
In such a case, we put

= | 2 (1.4)

2n

and

a, =2"s, —ordy(h,) and b, =2"—a,. (1.5)

Here, [x| denotes the smallest integer > x. Then, s,, > 2, a,, > 0 and b,, > 1.
For instance, when n = 0, we have

so = ordy(hg), ao=0, by=1. (1.6)
Further, we define an ideal ©,, of A by
O, = (2, 271 (1 +T)*" +1) C A. (1.7)
We easily see that
A/, = (Z)25 )% @ (7,250 )P0 (1.8)
as abelian groups. For the ideal ©,, we often write ©,(d) with d = —2,

2 or —2¢ when they are associated to Ly = Q(v/—2), Q(v/2) or Q(v/—2¢),
respectively.

Let k, be the smallest nonnegative integer x such that p splits completely
in Q(21/267K+1). It is known that 0 < , < e and that for any i with 0 < i <e,
there exist infinitely many prime numbers p of the form p = 2¢*1¢g + 1 with
21 ¢ for which k, =i ([5, Lemma 1]). We put

f=e—k,+1(>1) and f=min{f e}

When k, > 2, we have f = f < e—1. In the following, we simply write
“f <n<e—1" when x, > 2 and f <n <e—1. It is known that the prime
2 splits completely in kf/ Q and the primes over 2 remain prime in k.yq/ ki
([5, Lemma 3]).

Now we can state our results. As the case Ly = Q(v/2) is dealt with in [5],
Loy denotes Q(v/—2) or Q(v/—2¢) in the rest of this section unless otherwise
stated. As we mentioned before, F,, is imaginary for 0 < n < e — 1. For a
finite abelian group A and an integer ¢ > 1, let

7ot (A) = dimp, 271 A/2'A
be the 2f-rank of A.



Proposition 1.1. The 2-rank ro(A,,) equals 2™ or 142" when 0 <n < f—1
and 27 or 1427 when f < n < e—1 according as Ly = Q(v/=2) or Q(v/—2¢).

Proposition 1.2. The 4-rank r4(A,) is positive if and only if 0 <n < f—1.
Let h, be, as in (1.3), h,, or half of h,. When 0 < n < f — 1, it follows

from these propositions that ordy(h,) > 2™ + 1, and hence the integers s,
apn, b, and the ideal ©,, of A are defined by (1.4), (1.5) and (1.7).

Theorem 1.1. When f <n <e—1, the A-module A,, is isomorphic to
A2, T) or A2, T)@A/(2, T)
according as Ly = Q(v/—2) or Q(v/—20).

Theorem 1.2. When 0 <n < f — 1, the A-module A,, is isomorphic to
A/O,(=2) or A/(2,T)®AN/O,(—2()

according as Ly = Q(v/=2) or Q(v/—20).

When n = 0, we see from (1.6) and (1.8) that Theorem 1.2 is a Galois
module version of the classical result (1.2) of Rédei and Reichardt for the
imaginary quadratic field Fy. Thus Theorem 1.2 combined with (1.8) is a
generalization of (1.2). For comparison, we recall here some results in [5,
Theorems 1, 2, Proposition 2] for the case Ly = Q(v/2). In this case, F,, is
imaginary only when n = e.

Theorem 1.3 ([5]). Let Ly = Q(+/2).
(i) Assume that r, > 1. Then, the A-module A, is isomorphic to A/(2,T* ™).

(ii) Assume that r, = 0. Then, ro(A.) = 2¢, and ordy(h.) = 5 when e = 2

and ords(he) > 2° 4 2 when e > 3. Further, the A-module A, is isomorphic
to A/O.(2).

By definition, the integers s,, a, and b, depend on Ly. We computed
the values of ordy(h,) for various Lg. We are surprised to find that there
are several cases where these integers behave in quite a regular way when n
moves and that they do not depend on the choice of Ly. (See Tables 3 and 4
in Section 8.) For instance, for p = 65537 = 2'6 + 1, we have e = 15, k, = 5,

f=11and

ords () = 12, 20, 36, 68, 132, 260, 516, 1028
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with n = 3, 4, 5, 6, 7, 8, 9, 10, respectively, when Ly = Q(v/—2) and
Q(v/—2¢) for ¢ € P with ¢ < 1000. There are 42 such Ly’s. By (1.4) and
(1.5), this implies that

(Sn, Gny bp) = (2,2" —4,4) and ordy(h,) =2"+4

for these n and Lg. In particular, it follows from (1.8) that the 4-rank r4(A4,,)
equals 4 for these n and Ly. On the other hand, the value ordy(hg) ranges
over the integers 2 ~ 8, ordy(hy) = 4 ~ 10 and ordy(hy) = 8 ~ 13. Further,
for various numerical data, see Section 8. These examples lead us to prove
the following theorems on the 4-rank of A,. By virtue of Proposition 1.2,
it suffices to deal with the case where f > 2 and 0 < n < f — 1. Thus,
we assume f > 2 in the following. Further, by Theorem 1.2 and (1.8), we
already know that r4(A,) < 2" and that the following equivalence holds for
these n:

ry(A,) < 2" <= s,=2 and b, < 2" (1.9)
<= ordy(h,) < 2"

To state the theorems, it is convenient to divide the set P of prime numbers
¢ satisfying (1.1) into two classes. Let P, (resp. P_) be the subset of P
consisting of those ¢ with ¢ =1 mod 8 (resp. £ = —1 mod 8).

Theorem 1.4. When the base field Lo moves over the quadratic fields Q(v/—2)
and Q(v/—2¢) with ¢ € P, the following assertions hold.

(i) For 0 <n < f —1, the 4-rank r4(A,) depends only on n, and not on
mndividual Lg’s.

(ii) Assume that there exists some 1 < n < f — 1 for which ry(A,) < 2"
(or equivalently, s, = 2 and b, < 2"). Let n; > 1 be the smallest such

integer, and put by =b,+ (< 27 ). Then, bf > 2% 1 and

(Sns ns bn) = (2,2 = b, b))  and  ordy(hy) = 2" + b}

p’"p

for any n with n; <n < f—1 and for Ly = Q(v—2) and Ly = Q(v—2()
with any £ € Py. Further, r4(A,) = 2" for 0 <n < n; —1.

Theorem 1.5. When the base field Ly moves over the quadratic fields Q(+/—2()
with ¢ € P_, the following assertions hold.
(i) For 0 < n < f —1, the 4-rank r4(A,) depends only on n, and not on
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individual Lo’s.

(ii) Assume that there exists some 1 < n < f — 1 for which r4(A,) < 2"
(or equivalently, s, = 2 and b, < 2"). Let n, > 1 be the smallest such
integer, and put b, = b, (< 2™ ). Then, b, > 2" ', and

(Sns ns by) = (2, 2" = b, b)) and  ordy(h,) = 2"+ b,

P’ 7P

for any n with ny <n < f—1 and for Ly = Q(v—2() with any { € P_.
Further, r4(A,) =2" for0 <n <n; —1.

For the above mentioned example p = 65537, we have (n},b¥) = (n,, b, )

(3,4). We will see in Section 8 that there are cases where (n.5,b,) # (n,,b,).
In contrast to Theorem 1.4, Theorem 1.5 does not deal with Q(+/2). This is
because when Ly = Q(v/2), F, is imaginary only for n = e. The following

theorem recovers this weak point when x, = 0.

Theorem 1.6. Let Ly = Q(v/2), and assume that r, = 0 (so that f = e).
(i) Assume that ry(A.) < 2¢71. Let ny > 1 be the smallest integer such
that b, < 2™. Then, the assumption of Theorem 1.5(ii) is satisfied, and the
assertion of Theorem 1.5(ii) holds with (n,, b)) = (n1, be).
(ii) Assume that ry(A.) > 271, Then, we have ry(A,) = 2" for any
0 <n <e—1and for Ly = Q(v/—20) with any { € P_. Hence, the

assumption of Theorem 1.5(ii) is not satisfied.

We will see in Section 8 that there are cases where the assumption in
Theorem 1.4(ii) or Theorem 1.5(ii) is not satisfied and that the two cases in
Theorem 1.6 actually occur. We know that r4(A;) = 1 or 2 by (1.9) (and
f >2). We can determine r4(A;) as follows.

Theorem 1.7. (I) When Lo = Q(v/=2) or Q(v/—2¢) with { € P, we have
r4(A1) = 2. Hence, under the assumption of Theorem 1.4(ii), we have nf > 2
and b > 2.

(IT) When Lo = Q(v/—2¢) with ¢ € P_, we have r4(A;1) = 2 if and only
if e > 3. Hence, under the assumption of Theorem 1.5(ii), we have n, =1
andb;:1 when e = 2, cmdn; > 2 andb; > 2 when e > 3.

This paper is organized as follows. In Section 2, we give some propositions
and remarks related to the theorems. In Section 3, we show some technical
lemmas which are necessary to prove the theorems. In Section 4, we study



some basic properties of the tower k..;/Q, which are key for proving our
results. We prove Theorems 1.1, 1.2, 1.4 and 1.5 in Section 5, Theorem 1.6
in Section 6, and Theorem 1.7 in Section 7. In Section 8, we give several
numerical data related to Theorems 1.1-1.7.

2 Related propositions and remarks

Let p = 2°"1¢ + 1 be a prime number with 2 { ¢. Letting Ly = Q(v/—2) or
Q(v/—2¢) with ¢ € P, we use the same notation as in Section 1. In particular,
for 0 <n <e+1, k, is the subfield of Q((,) of degree 2", and L,, = Lok,.
We see from the class number formula [15, Theorem 4.17] that the relative
class numbers i and h, = hz are related by

hL
ho =2 x —L (2.1)

n —

Ly

for 0 < n < e. Here, we have used the fact that the unit indices of L, and
F, are 1 (Conner and Hurrelbrink [2, Lemma 13.5]). We see that the class
numbers h enjoy Iwasawa type “class number formula” from (2.1) and our
results on the class group A,.

Proposition 2.1. For f+1 <n <, ordy(h; ) equals (2! —1)n+v or 2'n+v

according as Lo = Q(v/—2) or Q(v/—2) with some integer v depending on p
and Ly.

Proposition 2.2. Under the setting and the assumption in Theorem 1.4 (ii)
or 1.5(ii), for ny +1 < n < f, ordy(hy) equals 2" + (by — 1)n + v or
2" + bin + v according as Ly = Q(v/=2) or Q(v/—2() (¢ € P) with some
integer v depending on p and L.

For example, when p = 65537, we have ordy(h; ) = 2" +4n +v with 4 <
n < 11 and ordy(hy ) = 2"'n+1" with 12 < n < 15 for every Ly = Q(v/—2()
with ¢ € P.

PROOFS OF PROPOSITIONS 2.1 AND 2.2. For f+1 < n < e, we see
from (2.1) that

n—1
-
ordy(hy-) = Zordg (%) + ordg(hL;).

J=f



By Propositions 1.1 and 1.2, ordy(h;) = 2/ or 2/ + 1 according as Ly =
Q(v/—2) or Q(+/—2f¢). From this, we obtain Proposition 2.1. Under the
setting and the assumption of Theorem 1.4(ii) or Theorem 1.5(ii), we see
from the theorem that for n;; <n < f—1, ordy(h;,) = 2"+ b5 or 2" + b7 +1
according as Ly = Q(v/—2) or Q(v/—2¢). From this and (2.1), we obtain
Proposition 2.2. 0

Remark 2.1. Let us refer to the papers of Ferrero [3] and Kida [8]. Let
B../Q be the cyclotomic Zs-extension, and B,, its nth layer with n > 0. Let
N be an imaginary quadratic field, and put N,, = NB,, with 0 <n < co. Let
F,, be the imaginary quadratic subextension of the (2, 2)-extension N, /B,
with F,, # N,.1. Ferrero and Kida independently computed the Iwasawa
lambda invariant of the cyclotomic Zs-extension N /N by studying the 2-
part of the class group of F;, for sufficiently large n. Propositions 2.1 and 2.2
for the finite tower L./Lq are analogous to the above classical result for the
Zo-tower N /N.

Remark 2.2. In Proposition 2.2, the “p-invariant” is positive ! This is
because the prime 2 splits completely in k;/Q and ramifies in L. Let us
recall here a paper [6] of Iwasawa, where he constructed (non-cyclotomic)
Z,-extensions with positive p-invariants. Our reason for positive p is almost
the same to that in [6].

Remark 2.3. Iwasawa type “class number formula” is already known for a
finite tower inside the pth cyclotomic field in Example in Lehmer [10, page
607], a table in Schoof [12, Appendix| and [4, Theorem 3|. For this “formula”,
the “p-invariant” is zero.

Remark 2.4. For 0 < n < e — 1, we see that p splits completely in
Q(2V%""™)/Q if and only if 0 < n < f—1. This is because p splits completely

in Q(2/%') and the primes over p remains prime in Q(2/2°")/Q(22") ([5,
Lemma 3]). Therefore, Proposition 1.2 says that the 4-rank of A, is positive
if and only if p splits completely in Q(21/2"""). This assertion is analogous to
several classical results on “governing field” for the 2-part of the class group
of quadratic fields such as those in [1, 11, 16].

Remark 2.5. Under the setting and the assumption of Theorem 1.4(ii) or
Theorem 1.5(ii), the theorem implies that r4(A,) = 2" for 0 < n < ni —1
and r4(A,) = b for n¥ <n < f—1. On the other hand, Yue [18] generalized



a result of Rédei [14] and gave a formula for the 4-rank of the class group of
a relative quadratic extension. It would be possible to derive Proposition 1.2
and the above mentioned result on r4(A4,) from his formula using the results
in Sections 3 and 4 and Lemmas 5.1, 5.2 of this paper.

3 Some lemmas

In this section, we collect several lemmas which are necessary to prove the
theorems. Some of them are known to specialists. For a number field N, let
Oy be the ring of integers of N, and Ey = O the group of units of N. The
following lemma is given in [5, Lemma 6].

Lemma 3.1. Let k be a totally real number field of degree n. Assume that
the narrow class number of k is odd and that the prime 2 splits completely in
k;2=4qy---qn. Then, the map

B, — (01/4) = (O4/d)* @ ---® (01/q2)*; € — emod 4
18 surjective.

For a CM field N with its maximal real subfield N T, an ideal class ¢ € Cly
is ambiguous when ¢/ = ¢ where J is the nontrivial automorphism of N over
N*. The number of ambiguous classes is denoted by a(NN), and is given by
the following lemma (see Yokoi [17]).

Lemma 3.2. For a CM field N,

Qthl

[EN+ . EN+ ﬂN(NX)]

a(N) = hN+ X
Here, ty is the number of prime divisors of NT (finite or infinite) which are
ramified in N, and N is the norm map form N to N*.

Let M /F be the Hilbert 2-class field of a number field F', namely, the
class field corresponding to Ar = Clr(2). Via the reciprocity law map, we
identify Ap with Gal(M/F):

Ap = Gal(M/F); ¢4 pe.

Here, p. is the Frobenius automorphism associated to the ideal class c. Let
K/F be an unramified quadratic extension, and let B = Gal(M/K) C Ap.
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Clearly, B> C AZ%. For an abelian group A, let 5A be the subgroup of A
consisting of elements ¢ € A with ¢ = 1. The following lemma has its origin
in [13], and is used repeatedly for studying the 4-rank of quadratic fields.

Lemma 3.3. Under the above setting, the following three conditions are
equivalent with each other.

(i) The unramified quadratic extension K/F extends to an unramified
cyclic quartic extension.

(ii) For any ¢ € 2Ap, the automorphism p. is trivial on K.

(iif) B2 C A2.

PRrROOF. First, we show (i) = (ii). Assume that K/F extends to an
unramified cyclic quartic extension N/F. Then, for ¢ € yAp, the restriction
peiy € Gal(N/F) is trivial or of order 2. This implies that the restriction
Pex to the quadratic subextension K of the cyclic extension N /F' is trivial.
Next, to show (ii) = (iii), assume to the contrary that B? = A%. Choose an
element ¢ € Ap such that p, is nontrivial on K. Then, as B? = A%, there
exists ¢; € B with ¢ = ¢®. Let d = ccl_l. Then, d?> = 1 and hence d € 3 Ap.
However, we see that p, is nontrivial on K because p. is nontrivial and p,, is
trivial on K. Finally, to show (iii) = (i), assume again to the contrary that
K/F never extends to an unramified cyclic quartic extension. Let M,y/F
(resp. Mp/K) be the subextension of M/F (resp. M/K) corresponding to
A2 (resp. B?) by Galois theory. As B C Ap, we have M4 C Mp. Let N/K
be a quadratic subextension of Mp/K. Then, from the assumption, we see
that the abelian quartic extension N/F' is a (2,2)-extension. This implies
that N C My, and hence Mg C M,. Therefore, we obtain M, = Mg, and
hence B? = A%. O

Remark 3.1. Let q; (1 <7 <r) be some prime ideals of F', and let ¢ be an
odd integer. When oA is generated by the ideal classes [g], the condition
(ii) in Lemma 3.3 holds if and only if these prime ideals q; split in K/F.

The following lemma is well known ([15, Exercise 9.3]).

Lemma 3.4. Let q be a prime ideal of F over 2. Let K = F(y/w) be a
quadratic extension with w € F* relatively prime to q. Let a > 1 be an
integer with q*||2. Then, (i) the prime ideal q is unramified in K if and only
if w = u? mod q** for some u € Op, and (ii) it splits in K if and only if
w = u? mod ¢%**! for some u € Op.
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~ Asin Section 1, let A = Zy[[T]]. Let A be a finite cyclic A-module with
h = |A|. Denote by 14 C A the annihilator of the A-module A so that
A= A/I, as A-modules. Assume that (i) j = (14 7)*" acts on A via (—1)-

multiplication and that (ii) 72(A) = 2™ but ords(h) > 2"+ 1. The assumption
(i) implies that (1 +7T)?" +1 € I4. Asin (1.4) and (1.5), we put

— [Or%n(h)—‘ , a=2"s—ordy(h), b=2"—a,

so that we have s > 2, a > 0 and b > 1. The following algebraic assertion is
essentially contained in [5, Proposition 3].

Lemma 3.5. Under the above setting and assumptions, we have
Ly=(2°,2°'T", (1+ 1) + 1),

and hence

A= (Z/27) @ (2/2)% (3.1)
as abelian groups.

PROOF. We can write

A= z/2)%"

=1

as abelian groups for some integers r > 1, ¢, >0 (1 <i¢<r—1) and ¢, > 1.
As the 2-rank of A is 2", we have

Z t; =2", and Z it; = ordy(h). (3.2)

We see that r > 2 as ordQ(l_z) > 2" 4+ 1. We observe that
B:= A" = (2/2)% 1 @ (Z/4)®", and 1<t, |+t <2

Let Iz C A be the annihilator of the cyclic A-module B. Then, we see
immediately from [5, Proposition 3| that t,_; + ¢, = 2" and

Ig= (4, 27", (1+T)*" +1). (3.3)
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It follows from (3.2) that t; =0 for 1 <7 <r — 2 and that

tr—1+t.=2" and (r—1)t,_; + rt, = orda(h).

Then, noting that t, > 1, we observe that » = s, t,_1 = a and t, = b from
the very definitions of s, a and b. Therefore, we obtain the assertion (3.1) on
the abelian group A. Noting that B = A2 with r = s, we see from (3.3)
that the ideal I of A generated by 2°, 25717T% and (1 + T)?" + 1 is contained
in I4. Since the abelian group A/I is isomorphic to the righthand side of
(3.1), we obtain [ = I4. O

4 Arithmetic of the tower k./Q

We use the same notation as in the previous sections. In particular, p =
2¢t1g + 1 is a prime number with 2 { ¢, and %, is the subfield of Q((,) of
degree 2". In what follows, we let

h = hy

e

be the class number of k., which is odd by [15, Theorem 10.4]. The class
number of k, for n < e is a divisor of h because k./Q is totally ramified at
p. Let p,, be the unique prime ideal of k, over p, so that we have (p) = p2".
For 0 < n < e, there is an element d,, of k, such that k,; = k,(\/d,). The
element d, is totally positive when 0 < n < e — 1, and it is totally negative
when n = e. Since k,11/k, is ramified only at p,, and h is odd, we can choose
d,, so that it satisfies

(d,) =p" and d, =u®mod 4 (4.1)

for some u € Oy,,. Here, the last congruence holds by Lemma 3.4(i). Further,
as 2 splits completely in k7/Q and the primes over 2 remain prime in k.11 /kf
([5, Lemma 3]), we see from Lemma 3.4(ii) that

dy=1mod8 for0<n<f—1 (4.2)

but 3
d, Zu*mod 8 for f<n<e (4.3)

for any u € O, . Further, we have

Fo=ka(\/2dy),  kn(v/=2d,) or ky(r/—20d,)
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according as Ly = Q(v/2), Q(v/—2) or Q(v/—2/).

We put G,, = Gal(k,/Q), which is a cyclic group of order 2". We fix a
prime ideal q; of k; over 2, and for 0 < n < f, we put q,, = Ny/,qy. Here,
Ny denotes the norm map from k; to k,. Then, q,, is a prime ideal of &,

over 2, and
@ =] a5
ceGp
When (f <e—1and) f+ 1 <n <e, we denote the unique prime ideal of
ky over q7 with o € G by the same symbol q7. Now, we choose and fix a
prime number ¢ € P. We put

o _ -2, when Ly = Q(v/—2) or Q(v/—2¢) with £ € P,
R when Ly = Q(v/2) or Q(v/—2/) with ¢ € P_,
and
o l, when ¢ € P, |
| ¢, when/ecP_.

Then, we have
E*
20" =—=2¢, (*=1mod8, and (—> =—1
p
for every £ in P =P, LUP_. As hy,,, is odd, the narrow class number of ky is
odd. Therefore, by Lemma 3.1, we can choose an element w of k; such that
q} = (w) and
w
@ =1mod g7 and w=1mod (q7)
for o € Gy with o # 1;. Here, 1, denotes the identity element of G,,. For
0<n<f—1, we put w, = Nyjw. Then we see that " = (w,) and

(;’;h =1mod ¢> and w,=1mod (q9)? (4.4)

for o € G, with 0 # 1,. When f < n < e and Ly = Q(v/%2), we simply
set w, = w. When f < n < e and Ly = Q(v/—2¢), we set w, = w or
(*w according as w is a quadratic residue module py or not, so that w, is
a quadratic residue module p,, by (1.1). Then, in any case, we see that w,
satisfies the congruence (4.4) for any 0 <n < e as ¢* = 1 mod 8 and that
wp = Nyjpwyp mod (k) (4.5)

for 0 < n < f — 1. From the above, we obtain
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Lemma 4.1. When Ly = Q(v/—2¢) with ¢ € P, w, is a quadratic residue
modulo p, for each 0 < n <e.

Let V;, be the submodule of k/(k))?* generated by the class [w,] over the
group ring Fy[G,], and let W), be the submodule of k£ /(kX)? generated by the
class [¢*] and V,,. (We need the module W,, only for the case Ly = Q(v/—2/).)
We denote by ‘N/n and Wn the images of V,, and W, under the lifting map
kX/(kX)* — Fr/(FX)?, respectively.

Lemma 4.2. Under the above setting, we have

dimg, V,, = dimg, V,, = 2"  or 2/
and .
dimp, W, = dimg, W,, =2" +1 or 2/ +1
according as 0 <n<f—1or f<n<e.

Proor. We show the assertion only for W,,. The assertion for V,, is
shown similarly. We easily see that

dimg, W, < dimp, W,, <2"+1 or 2/ +1.

Hence, it suffices to show that the dimension of Wn equals 2" + 1 or 2/ + 1.
We show it only for case n = e. It is shown similarly for the other cases. Put

r=0x [] Wh ek}

O’EGf

with s, t, = 0, 1. Assume that = is a square in F,. Then, as F, =
k.(v/—20d.), we observe that = or y = —2ld.x is a square in k.. When
x is a square in k., the ideal

() = (0" < ] ap™

O‘EGf

is a square of an ideal of k.. Here, u = 0 or deGf t, according as wy = w or
*w. However, since ¢ and 2 are unramified in k. and h = hy, is odd, we see
that s 4+ u is even and t, = 0 for o € G¢, from which follows s = 0. Further,
since p’|ly and A is odd, y is not a square in k.. O
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By Lemma 4.2 and (4.5), we see that the lifting map & /(k)? — k) 1/ (k)
induces an injection V,, — V11, which is bijective for f <n < e — 1. There-
fore, letting V' = V}, we regard V,, as a submodule of V when 0 <n < f —1,
and we identify V,, with V when f 4+ 1 < n < e. We denote the group ring
Fo[Gy] by R:

R = TFy[Gy].
We also see from Lemma 4.2 that V' = V; = R - wy is free and cyclic over R,

and we fix an isomorphism

t:V—->TR (4.6)

sending wy to the identity element 1; of Gy. For 0 < n < f, we denote the
element of R corresponding to the norm map Ny, from ky to k, also by
Ny Let J, = (Nf/n) be the ideal of R generated by Ny,,. Then, by the
definition of V,, and (4.5), we obtain

(Vi) = Iy, (4.7)

for 0 < n < f. Let p be a generator of the cyclic group G; of order 2.
For 0 < i < 27, let U; be the ideal of R generated by (1 + p)’. We have a
filtration

U =RDOU DD Uy_; DUy ={0}.

Lemma 4.3. (i) The ideals U; are all the ideals of R, and dimp, U; = 2/ —i
as a vector space over Fy. In particular, the ideals of R are parametrized by
their dimensions over IFy.

(ii) For 0 < n < f, J, = Uyi_on and dimg, J,, = 2". In particular,
Jo = Usys_y 15 the smallest nontrivial ideal of R.

PROOF. The first assertion is shown in [5, Lemma 8]. Let us show

2f-n_q
Nym= > (1+7") = (149"
=0
This is obvious for n = f. If this holds for n (< f), then we see that

n—1 n—1 f_on f_on—1
Nijn-ty =1+ p" INpm=(1+p)" (14p)" " =1+p" ",

and hence the equality holds for n — 1. Therefore, we obtain the second
assertion. O
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Consider an element « of k¢ of the form

a= H (wf)* with a, =0, 1

O'EG'f

such that o

a=1mod (q7)® or @) = 1 mod (q5)? (4.8)
according as a, = 0 or 1. Let ) be the submodule of V' generated by the
classes [a] for all such a. We easily see that @) is a R-submodule of V. Since

(2°)" = Njjowy mod (Q*)?, (4.9)

we see that [2*] € @ and that @ is nontrivial. We put Q = «(Q) C R. This
is a nontrivial ideal of R. The following simple lemma on the ideal Q plays
a crucial role for showing Theorems 1.4-1.6.

Lemma 4.4. The ideal Q depends only on whether 2* = —2 or 2, and not
on individual Lq’s.

PROOF. The element w € k; defined by (4.4) depends only on whether
2" = =2 or 2. Since wy = w or f*w and ¢* = 1 mod 8, the submodule @
of V' consisting of elements « satisfying (4.8) depends only on the value 2*.
Hence, the ideal Q also depend only on the value of 2*. n

5 Proofs of Theorems 1.1, 1.2, 1.4 and 1.5

First, we introduce some notation which we use in Sections 5 and 6. The
prime ideals p,, and q¢ of k,, ramify in F,,, where o runs over the Galois group
G (resp. Gy) when 0 < n < f —1 (resp. f <n <e). We denote by B,
and 97 the prime ideals of F,, over p,, and q7, so that we have p,, = P2 and
q9 = (9Q9)? in F,,, respectively. When Lo = Q(v/—2¢) with ¢ € P, the prime
number ¢ remains in k, by (1.1), and ramifies in F,,. We denote by £, the
prime ideal of F,, over ({), so that we have (¢) = £2 in F,,. For 0 < n <ee,
we put

M} = F.(Va| o] € V).
When Ly = Q(v/—2¢), we put

M = F, (V&) and M2 = MM = Fo(Va | [o] € W,).
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These extensions of F,, play an important role for proving our theorems.

In the rest of this section, we prove Theorems 1.1, 1.2, 1.4 and 1.5 for
Ly = Q(v/—2) or Q(v/—2¢). So, n runs over 0 < n < e — 1. We begin with
showing Proposition 1.1.

PROOF OF PROPOSITION 1.1. We show the assertion only for Ly = Q(v/—2/).
It is shown similarly for Ly = Q(v/—2). We use Lemma 3.2 for the imaginary
cyclic field F,, = k,(v/—20d,,) noting that F, = k,. Let g, be the number
of ambiguous classes in A,,, namely g, is the 2-part of the ambiguous class
number a(F,). Let r be the 2-rank of Ax,. Then we see that g, = 2" be-
cause a class ¢ € A, = A} is ambiguous if and only if ¢ = 1. Let E; be the
subgroup of Fj, consisting of totally positive units. Then it follows that

E; C E, NN(F))CE/.

Since the class number of the imaginary cyclic field k.,; is odd, so is the
narrow class number of k,. Therefore, a unit € € Ej, is totally positive if
and only if it is a square in k, ([2, Corollary 13.10]). Hence, Ey, NN (F))
coincides with E} , and

[Ekn . Ekn mN(JT";;)] = 22n.

The primes of F,I = k,, ramified in F,, are prime divisors over p, ¢ and 2 and
infinite prime divisors. The number ¢x, of all such primes equals

trp,o=14+1+42"4+2" or 14142/ 427

accordingas 0 <n < f—1lor f <n <e—1. Accordingly, we see from Lemma
3.2 that g, = 22"*! or 22’1, Now, we obtain the assertion as g, = 2". [

Lemma 5.1. (i) The case Ly = Q(v/=2). The group »A, is generated by the
ideal class [Q"] over FyG,).

(ii) The case Ly = Q(v/—20). The group oA, is generated by the ideal
classes [B"] and [Q] over Fo|G,].

PrROOF. We show the assertion for the case where Ly = Q(v/—2¢) and
n = f. It is shown similarly for the other cases. We already know that
PH? = p} and (Q})* = q} are principal ideals. Let Sy be the subgroup of
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oAy generated by the classes [P}] and [Q}] over Fy[G]. By Proposition 1.1,
it suffices to show that the 2-rank of S equals 2/ + 1. Assume that

B9 ] @) = (o)

O'GGf

for some o € F* with s, t, = 0, 1. Then it follows that

(@®) =} II @) = (a)

O‘EGf

for some a € k; because h = hy . We see that ae = o? for some unit € of
ks because the unit index of Fr is 1 ([2, Corollary 13.10]). Therefore, since
Fr = kp(\/—2ldy), ae or ae x (—20dy) is a square in ky. This implies that
the principal ideal (a) or (2aldy) of ks is a square in the group of ideals k.
For the first case, we see that s = ¢, = 0 for all o in G since h is odd.
The second case is impossible because | remains prime in ky. Thus, we have
shown that the 2-rank of Sy is 2/ + 1. [l

Lemma 5.2. (i) The case Ly = Q(v/=2). The extension M}/F, is the class
field corresponding to A, JA?.

(i) The case Ly = Q(v/—2(). The extension M?/F, is the class field
corresponding to A, /A2, and the subextension M} /F, is the mazimal inter-
mediate field of M?/F, in which the prime ideal B,, over p splits completely.

PRrROOF. We show the assertion (ii) for Ly = Q(v/—2¢). The assertion (i)
is shown similarly. We see from Lemma 4.2 that the 2-rank of the abelian
group Gal(M?2/F,) of exponent 2 equals 2" + 1 or 2/ + 1 according as 0 <
n<f—1lor f<n<e—1 Then, we observe from Proposition 1.1 that
for showing the first assertion of (ii), it suffices to show that the extension
M?2/F, is unramified. To show that it is unramified, it suffices to show that
the subextensions F,(vV¢*)/F, and F,(y/&%)/Fn (0 € G,,) are unramified.
As F,/Q is a Galois extension, F,,(y/wg)/F, is unramified if and only if so
is F,(y/@n)/Fn. Since ¢* = 1 mod 8, F,,(v/*)/F, is unramified outside ¢ by
Lemma 3.4. It is unramified also at ¢ since F,,/k, is ramified at ¢. It follows
that F,(\/w,)/F, is unramified outside 2 even for the case w, = (*w. As

Fn = kn(v/2%0%d,,), we have
Fol/wn) = Fo(/x) with z =

Wn

(24)"

x (0*d,) .
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Therefore, by (4.1), (4.4) and Lemma 3.4, we see that F,(y/w,)/F, is un-
ramified also at 2. Thus, we obtain the first assertion of Lemma 5.2(ii).
The element ¢* is a quadratic nonresidue modulo 3, by (1.1), while w, is a
quadratic residue modulo 3,, by Lemma 4.1. Therefore, the second assertion
of (ii) follows from the first one. O

We denote by M,, = Mz, the Hilbert 2-class field of F,,, so that we can
identify Gal(M,,/F,) with the class group A,. When Ly = Q(v/—2(), we
put

B, = Gal(M,,/M?) and C, = ([B"]).

n

We see that B, is a A-submodule of A4, = Gal(M,,/F,) because M? is Galois
over Q. The group C, is also a A-submodule of A,, because the ideal 3, is
invariant under the action of I';, = Gal(F,,/Q). It follows that

C, =2 AN/(2,T).

Proposition 5.1. (i) The case Lo = Q(v/—2). The A-module A, is cyclic.

(ii) The case Ly = Q(v/—2¢). We have a decomposition A, = B, & C,
of A-modules. The A-module B, is cyclic, and dimg, B,/B% = 2" or 2/
according as 0 <n< f—1or f<n<e-—1.

PROOF. We show the assertion (ii). The assertion (i) is shown similarly.
By Lemma 5.2(ii), we see that B, remains prime in the quadratic extension
M?/F,. This implies that [B,] € B, = Gal(M,/M?). Tt follows that
B, N C, = {0}, and hence A, = B, ® C,,. We observe that the quadratic
extension M?/F, does not satisfy the condition (ii) of Lemma 3.3 since [B"] €
2 A, and R, remains prime in M?/F,,. Hence, we obtain A2 = B2 by Lemma
3.3. From this and Lemma 5.2(ii), we see that the intermediate field of
M.,,/M? corresponding to B2 coincides with M? = MYM}. Therefore, we
obtain an isomorphism

B,/ B, = Gal(M;/M,) = Gal(M,/F,),

which is compatible with the action of I'y. The submodule V,, of FX/(Fx)?
is naturally regarded as a module over R,, = Zs[l',], and hence as a module
over A. The module Vn is cyclic over A since V, is cyclic over Fo[G),]. The
Kummer pairing

Gal(M,/F,) x Voo = {£1}; (g, [v]) = (g,v) = (/)77
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is nondegenerate and satisfies (g7,v7) = (g,v) for v € I',,. Therefore, we
obtain an isomorphism

Gal(M!/F,) = H = Hom(V,, {£1}), (5.1)

which is compatible with the action of I',. Here, v € T’ acts on f € H by
the rule f7([v]) = f([v]*""). Since the A-module V, is cyclic, we see from
(5.1) that Gal(M!/F,) is cyclic over A. Hence, so is B, /B2. Tt follows that
B,, is cyclic over A by Nakayama’s lemma. The assertion on the dimension

of B,,/B2 over F; follows from Lemma 4.2 and (5.1). O

Lemma 5.3. An unramified quadratic extension N/JF,, extends to an unram-
ified cyclic quartic extension if and only if (a) the prime ideals Q7 (o € G,,)
of F, over 2 split in N and (b) N C M} for the case Ly = Q(v/—2().

PROOF. We show the assertion only when Ly = Q(v/—2¢). It is shown
similarly when Ly = Q(v/—2). By Lemma 5.1, the group ,A,, is generated
by the classes [J"] and [(Q9)"] with o € G,,. Then, because of Lemma 3.3
combined with Remark 3.1, we observe that N/F,, extends to an unramified
cyclic quartic extension if and only if the prime ideals B, and Q7 with o € G,
split in N. On the other hand, by Lemma 5.2(ii), 3,, splits in N if and only
if N C M_!. Thus, we obtain the assertion. O

Lemma 5.4. The quadratic extension F,(V/2*)/F, extends to an unramified
cyclic quartic extension if and only if 0 <n < f —1.

PROOF. We show the assertion when Ly = Q(+/—2¢) using Lemma 5.3. It
is shown similarly when Ly = Q(v/—2). We see that F,,(v/2*) C M} by (4.9),
and hence the condition (b) in Lemma 5.3 is satisfied. As F,, = k,(v/2*0*d,,),

we have
Fn(V2%) = Fo(\/*d,).

By Lemma 3.4 and the congruences (4.2), (4.3), we observe that the prime
ideals Q7 of F,, over 2 split in F,(v/2*)/F, if and only if 0 < n < f — 1.

Therefore, we obtain the assertion from Lemma 5.3. O

Let N,4/F, be the composite of all unramified quadratic extensions
N/F, which extends to an unramified cyclic quartic extension. We see that
an unramified quadratic extension N/F, extends to an unramified cyclic
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quartic extension if and only if N C N, 4 and that N, 4 is Galois over Q. We
have N, 4 C M,% by Lemma 5.3.. Let V,, 4 be the submodule of V,, such that

n4_ \/_‘ 6Vn4

and let
Rn74 = L(Vn74) Q R = Fg [Gf]

Here, ¢ is the fixed isomorphism from V = V; to R = F3[Gy] in (4.6). As
N,,.4 is Galois over Q, R, 4 is an ideal of R.

Lemma 5.5. (i) When 0 <n < f —1, the ideal R, 4 coincides with QN J,
and it is nontrivial. When f <n <e—1, R,4 = {0}.

(il) For each n, the ideal R, 4 depends only on whether 2* = —2 or 2, and
not on individual Ly’s.

PRrOOF. By Lemma 5.4, V,, 4 contains the class [2*] if and only if 0 < n <
[ —1. By (4.9), we have ¢([2*]) = Ny)o € R. Therefore, R, 4 contains the
ideal Jy = (Ny)o) if and only if 0 < n < f — 1. On the other hand, Jy is
the smallest nontrivial ideal of R by Lemma 4.3. This implies that R, 4 is
nontrivial if and only if 0 < n < f—1. Let 0 < n < f —1. Let [a] be a
nontrivial element of V,,, so that N = F,(y/a) is a quadratic subextension
of M}/F,. Here,

a= H (wf)* with a, =0, 1,
O'EGf
and the elements a, satisfy

> 4,0 € Jy=(Ny).

O'EGf

By Lemma 5.3, N/F, extends to an unramified cyclic quartic extension if
and only if the prime ideals Q9 of F,, over 2 split in N/F,. For an element
x € k, relatively prime to q7 = Qf N k,, we observe from Lemma 3.4 that
the following equivalence holds:

the ideal Q7 splits in F,(v/z)/F, <= =1 mod (q79)*.

This is because the prime ideal g, of k,, is of degree one for 0 < n < f —1
and ramifies in F,. Now, we can write

N = Fu(va) = Fu(v/B) with §=

«

(24)"

x (€*d,) "
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As0<n< f—1,0*d, =1mod 8 by (4.2). Therefore, because of the above
equivalence, we see from (4.8) or the definition of the submodule @) of V' that
the prime ideals Q7 with o € G, split in N/F, if and only if [a] € Q NV,.
Then, it follows that V,, 4, = @ NV, and hence R,,4 = QN J, by (4.7).
Thus, we obtain the first assertion (i). The assertion (ii) follows from (i) and
Lemma 4.4. O

Lemma 5.6. If QN Jr_1 = Jr_1, then the 4-rank r4(A,,) equals 2" for any
0<n<s f—1.

Proor. If QN Js_y = Js_1, then we see from Lemma 5.5 that R, 4 =
QNJ,=J, for 0 <n < f—1. It follows from (4.7) that V,, = V,,4. This
implies that 74(A,) equals dimg, V,, = 2" by Lemma 4.2 O

PROOF OF PROPOSITION 1.2. Proposition 1.2 follows from Lemma 5.5.
m

PROOF OF THEOREM 1.1. We show the assertion when Ly = Q(v/—2Y).
It is shown similarly when Lo = Q(+/—2). By Proposition 5.1, the A-module
A, is a product of the cyclic A-module B,, and C,, = A/(2,T). By Propo-
sitions 1.1 and 1.2, B, 2 (Z/2)? as abelian groups. This implies that the
cyclic A-module B, is isomorphic to A/(2,T%"). O

PROOF OF THEOREM 1.2. We show the assertion when Ly = Q(v/—27).
It is shown similarly when Ly = Q(+/—2). By Proposition 5.1, the A-module
A, is a product of the cyclic A-module B,, and C,, = A/(2,T). The 2-rank of
B, equals 2" by Proposition 1.1, and |B,| > 2" by Proposition 1.2. This
implies that the cyclic A-module B, satisfies the assumptions of Lemma 3.5.
Hence, we obtain the assertion from Lemma 3.5. Il

PROOF OF THEOREM 1.4. Because of Lemma 5.5(ii) and the definition
of 2%, the ideal R, 4 = QN J, depends only on n when the base field Ly moves
over Q(v/=2) or Q(v/—2¢) with ¢ € P,. Therefore, we obtain the assertion
(i) of Theorem 1.4. We see that Q N Jy_; is nontrivial by Lemma 5.5(i). By
Lemma 4.3(ii), this implies that Q N Jr_q1 D Jo. If QN Jsy = Js_y, then
r4(A,) = 2" for any 0 < n < f — 1 by Lemma 5.6. Therefore, under the
assumption of Theorem 1.4(ii), we have Jo C QN Jy—y € Jy—y. It follows
from Lemma 4.3 that there exists an integer mg (1 < my < f — 1) such that

Jmo1 € ONJp1 S Ty (5.2)
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Then, by Lemma 5.5, we see that R,4 = J, for 0 < n < my — 1 and
Rpa=9NJrq € Jp for my < n < f—1. Therefore, we see from Lemma
4.3(ii) that r4(A,) = 2" for 0 < n < my — 1, and that r4(4,) < 2" for
mo < n < f— 1. Hence, the integer mq is nothing but the integer n;} in
Theorem 1.4. Now, by Lemma 5.5(i), we obtain the assertion of Theorem
LA(ii) on (Sp,an,by) and ordsy(hy,) with nf = mg and b} = dimg, Q N Jy_;.
Further, we obtain b} > 27 L from (5.2) and Lemma 4.3, O

PrROOF OF THEOREM 1.5. Theorem 5 is shown similarly to Theorem 1.4
by using Lemma 5.5. O]

6 Proof of Theorem 1.6

We see in the following lemma that many of the assertions shown in Section
4 when Ly = Q(v/=2) or Q(v/—2f) hold also when Ly = Q(v/2) and &, = 0.
In the following, we let Ly = Q(+/2), and assume that x, = 0. Recall that
F, is imaginary only when n = e.

Lemma 6.1. Under the above assumption, the following assertions hold on
the imaginary cyclic field F..

(i) r2(Ae) = 2° and r4(Ae) > 1.

(ii) The group 2A. is generated by the ideal class [Q"] over Fy[G.].

(iii) The extension M,/F. is the class field corresponding to A./A?.

(iv) The class group A. is cyclic over T..

PROOF. These assertions are shown in [5] except for the second assertion
(ii). We can show (ii) using r9(A.) = 2° in a way similar to Lemma 5.1. [

PrROOF OF THEOREM 1.6. As k, = 0, we have f=e+1and f =
e. Similarly to Section 5, let N.4/F. be the composite of all unramified
quadratic extensions over JF, which extends to an unramified cyclic quartic
extension. Let V.4 be the submodule of V; such that

Ney = F, \/_| ] € Vea),

and Reyq = t(Ves) € R = Fo[G]. Here, ¢ is the isomorphism from V =V, to
R =TF,[G,] in (4.6). We see that N, 4 is Galois over Q, and hence R, 4 is an
ideal of R. By Lemmas 3.3 and 6.1(ii), we see that an unramified quadratic
extension N/F, extends to an unramified cyclic quartic extension if and only
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if the ideals Q7 (0 € G.) of F, split in N. Hence, we obtain R.4 = Q from
Lemma 3.4 and (4.8) similarly to Lemma 5.5.

First, we assume that 74(A4.) < 2°7! and show Theorem 1.6(i). By The-
orem 1.3 and (1.8), the assumption implies that s, = 2 and b, = dimp, Q <
2¢71 For 1 < n < e—1, we observe from Lemma 4.3 that b, = dimp, Q < 2"
if and only if @ C J,. Hence, by the definition of the integer n;, we have
Jni—1 € Q C J,,. Therefore, we see that QN J, = J,, for n < ny —1 and that
ondJd,=9C J, forn; <n <e—1. Because of Lemma 5.5, it follows from
this that n; = n, and that b, = dimp, Q = sz . Thus, we obtain Theorem
1.6(i).

Next, assume that ry(A.) > 2¢°! and show Theorem 1.6(ii). Since
Res = Q, we see from the assumption that Q O J._; by Lemma 4.3. There-
fore, QN J, = J, for n < e—1. Hence, we obtain Theorem 1.6(ii) by Lemma
5.5. O

7 Proof of Theorem 1.7

As in the previous sections, we let p = 1 mod 8 and we use the same notation.
For a number field N, let Ay be the 2-part of the ideal class group of N in
the narrow sense. Clearly, Ay coincides with the usual class group Ay when
N is a CM field. When N is a quadratic field of discriminant d, we write
A(d) = Ay and we let h*(d) be the narrow class number of N. It is well
known that the A(—8p) and A(8p) are cyclic by Gauss and that 4|kt (—8p)
and 4|h™(8p) by Rédei and Reichardt [13, 14]. Morton [11, Theorems 2, 3]
obtained the following theorem on 8-divisibility on these class numbers, which
is a key for proving Theorem 1.7. For some related results on 8-divisibility,
see also [7, 16].

Theorem 7.1 ([11]). We have 8|h*(—8p) if and only if p splits completely
m Q((‘/ﬁ) We have 8|h*(8p) if and only if p splits completely in Q((qe, \4/5)

PROOF OF THEOREM 1.7. First, we prove Theorem 1.7(I). By Theo-
rem 1.4(i), it suffices to deal with the case where Ly = Q(v/—2) and Fy =
Q(v/=2p). We already know that L; = Fo(v/=2) = Q(v/-2, /p) is an un-
ramified extension over Fy and that L;/Fy extends to an unramified cyclic
quartic extension by Lemma 5.4. Let w; be the element of k1 = Q(,/p) de-
fined in Section 4, which satisfies the congruence (4.4) with 2* = —2. Then,
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we observe that N = Ly(\/wy)/L; is an unramified quadratic extension be-
cause of g = (w;) and (4.4). Here, q is a prime ideal of k; over 2 and h = hy,
is the class number of k.. Further, we easily see that N/Fy is a cyclic quartic
extension using wiw{ = (—2)" where o is the nontrivial automorphism of
k1/Q. On the other hand, we see that p splits completely in Q(+/2) as we
are assuming f > 2 in Theorems 1.4-1.7. Therefore, by virtue of Theorem
7.1, the unramified cyclic quartic extension N/Fj extends to an unramified
cyclic extension of degree 8. By Lemma 5.1(i), the class group 24y = 2 Az, is
generated by the class [Qf], where 9y is the prime ideal of Fy over 2. Then,
we see that the last condition on N/Fy is equivalent to saying that the prime
ideal Qg splits completely in N similarly to Lemma 3.3. Let q; and g7 be the
prime ideals of L; over q; and qf, so that we have Qq = ¢1q7 in L;. Now, we
see that the condition on N/Fy is equivalent to saying that the prime ideals
g1 and qf of Ly split in N = L;(/w1). By Lemma 3.4, this is equivalent to

(_WZI)h =1mod ¢} and w; =1mod (q7)>.
This congruence means that o = wy = Ny wy satisfies the congruence (4.8),
which is equivalent to @ 2 Vi, where @) is the submodule of V' = V} defined
just after (4.8). Therefore, we obtain Q@ O J; and Ry4 = J;. This implies
that T’4<A1) = dlIIl[E‘2 Jl = 2.

Next, let us show Theorem 1.7(IT). We use the real quadratic field K =
Q(+/2p) and the narrow class group Ax = A(8p) in place of Fy = Q(v/—2p)
and the usual class group Ay in the above argument. We see that £ =
K(V2) = K(\/p) is an unramified quadratic extension of K. Let w; be
the element defined in Section 4, which satisfies (4.4) with 2* = 2. Then,
we can show that E(,/w;)/K is a cyclic quartic extension unramified at
all finite primes. By Theorem 7.1, the extension E(/w;)/K extends to a
cyclic extension of degree 8 unramified at all finite primes if and only if
p = 1 mod 16. Let q be the unique prime ideal of K over 2, and let q; and
q] be the prime ideals of E over ¢q; and qf. Then, we see that JAk s a
cyclic group generated by the narrow ideal class [q] and that ¢ = q;47 in E.
Now, we can prove Theorem 1.7(II) similarly to Theorem 1.7(I) using the
quadratic extension E(,/w;)/E in place of L (y/wy)/L. O
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8 Numerical data

In the previous sections, we were working with a fixed e and prime numbers
p of the form p = 2¢71¢ + 1. In this section, we deal with various e and
various primes p, and we put

e, =orde(p—1)—1 and f, =min{e, —r,+ 1,¢,},

so that we have p = 2%*1g + 1 with 2 { q.

In Table 1 (resp. Table 2), we give the number of prime numbers p < 10°
with (e, k,) = (e, k) (vesp. f, = f). In view of Theorems 1.4 and 1.5, those
p with relatively large f, are of interest. By Table 2, there are 15 primes
p < 10° with f, > 5. For these p, we compute the values ordy(h,) by using
2-adic analytic class number formula when Ly = Q(v/—2) and Q(v/—2¢) for
¢ € P with [ < 1000, and we obtain Tables 3-5. Tables 3 and 4 are direct
data on the values ordy(h,) for prime numbers p = 65537 and 25601 with
(€ps Kps fp) = (15,5,11) and (9,4, 6), respectively. In the tables, the data in
the row £ = 1 are those corresponding to the case Ly = Q(v/—2). By virtue

of Theorem 1.2 and (1.8), we see from Table 4 that when p = 25601 and

Lo = Q(v-2),
A= ZJ16, A, = (Z/8)P2, Ay = (L)1) @ (Z/3)%2,

;143 i ?{%%%5)8%2(”2“@2;3’(2/4)@10 for 4<n<5
" (Z)2)P for 6 <n<8.

As we mentioned in Section 1, direct data on the values ordy(h,) and
resulting data on the abelian groups A, such as above have led us to prove
Theorems 1.4-1.6. From Tables 3, 4 and the equivalence (1.9), we see that the
both prime numbers satisfy the assumptions of Theorems 1.4(ii) and 1.5(ii)
and obtain the value n;. We obtain the value b by Theorem 1.2 and (1.8).
For instance, (n}, b)) = (4,10) for p = 25601. For the remaining 13 primes
p, we see from the corresponding data on ords(h,) that the assumptions of
Theorems 1.4(ii) and 1.5(ii) are satisfied and obtain n;- and bF. Table 5 lists
the values n;t and b;t for these 15 prime numbers.

In Table 5, the maximal value of n;,t is 4. We search for prime numbers p
with nf > 5. We have n;,t = 5ifand only if r4(A4) > 2% and 2% < ry(45) < 2°.
By (1.9), the last condition is equivalent to

ordy(hy) > 32 and 32 < ordy(hs) < 64.
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For Ly = Q(v/=2) and p < 10° with f, > 5, we compute the order of Ay
and obtain Table 6 on the number of such p with ordy(hy) = i (i > 17).
There are 98813 such prime numbers. In the table, the number of such p
with ordy(hs) = 17 = 2% + 1 is zero! Here, see Theorem 1.7 once more.
Among 98813 prime numbers in the table, there are only six primes with
ordg(ﬁ4) > 32. These primes are candidates of primes with n; > 5. By
further computation on ords(hs) for the six prime numbers, we obtain Table
7. The table contains the values of ordy(hs) also when Ly = Q(v/—2¢) for
the first three prime numbers ¢ € P,. We find three primes with nt =5, the
ones with ordy(hs) = 48 and 49. In the table, those p with the mark — do not
satisfy the assumption of Theorem 1.4(ii). Hence, for these p, r4(A,) = 2"
with 0 <n < f, — 1.

Table 8 gives some data related to Theorem 1.6 for the nine prime num-
bers p = py; in [5, Table 2]. Here, py,; denotes the minimum prime number
p satisfying (e,, k,, orda(hy)) = (4,0, 1) for Ly = Q(v/2). For such p, we have
fp = e =4. By Theorem 1.3 and (1.8), we see that the assumption of Theo-
rem 1.6(i) is satisfied if and only if 17 < i < 24. Among those p in Table 8,
there are six ones satisfying this condition. For these six ones, we list (n1, b.)
in the table. In the table, those ones with the mark — do not satisfy the
assumption of Theorem 1.6(i), and hence they do not satisfy the assumption
of Theorem 1.5(ii) by Theorem 1.6(ii). The table also gives the basic data
ordy(h,) with 0 < n < f, —1 = 3 when Ly = Q(v/—2¢) for the first three
prime numbers ¢ € P_. Then, we obtain the values n, and b, in Theorem
1.5, and we can re-check the equality (n,,b,) = (n1,bs) in Theorem 1.6(i)
for the six ones.
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Table 1: The number of prime numbers with (ep, kp) = (e, k).

S o b2 34 s 6|7 8]9]10) 11| total
0 2399 | 2409 0 0 0 00| 0] 0]0| 0] 0O | 4808
1 0 0 2399 0 O |0O]O0O]O0O]O0O]O0O]O0]O0 | 239
2 308 | 287 | 601 0 0 0,01 0]0|0] 0|0 119
3 66 76 | 151 (296 | O | O | O[O | O |O|O ]| O/ 589
4 20 17 37 70 |15 00| 0] 0|0 0|0 299
) 4 2 10 23 |4 (7100|0000 154
6 0 1 3 2 12 | 15142 0 | 0 |0O] O] O 75
7 0 0 1 0 4 21811710 ]0] 0] 0 32
8 0 0 0 0 O |2 |1[4]9]0]0]0 16
9 0 0 0 0 2 00|01 4]8[]0]0 14
10 0 0 0 1 O |0O|O[O]1]|1]1]0 4
11 0 0 0 0 0 0/0]0]0|0] 1|2 3
12 0 0 0 0 O l0O|O|[O]O0O]O]O0]1 1
13 0 0 0 0 0 0/0]0]0|0]01|O 0
14 0 0 0 0 O |0O]JO]O]O]O]O]O 0
15 0 0 0 0 0 17001 0]0]0]O0 1

total 2797 | 2792 | 3202 | 392 | 217 |91 |51 |21 |14 19| 2 | 3 || 9591
Table 2: The number of prime numbers with f, = f.
f 0 1 2 3 4 1567|8910 11 | total
7207 | 1202 | 894 | 218 |55 |9 |4 (0|1 0| O | 1 || 9591
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Table 3: ords(h,,) for p = 65537 (f, = 11).

0123 |4]5]|6 7 8 9 10 | 11~14

*1 51 6 | 8 12|20 |36 |68 | 132 | 260 | 516 | 1028 | 2048
41 214 |10]12]20 36| 68| 132|260 | 516 | 1028 | 2048
73 315 | 8| 12]20]36 |68 | 132|260 | 516 | 1028 | 2048
89 5|1 5 | 8112120 |36 |68 | 132|260 | 516 | 1028 | 2048
113 31 7|8 |12]20 36|68 | 132|260 | 516 | 1028 | 2048
137 2|4 110]12 |20 |36 |68 | 132 | 260 | 516 | 1028 | 2048
313 214 | 131220 36| 68| 132|260 | 516 | 1028 | 2048
337 81 5 | 8| 12]20 |36 |68 | 132|260 | 516 | 1028 | 2048
401 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
409 214191122036 |68 | 132|260 | 516 | 1028 | 2048
433 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
449 214191122036 |68 | 132|260 | 516 | 1028 | 2048
457 214 101220 36| 68| 132|260 | 516 | 1028 | 2048
521 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
569 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
o977 415 | 81212036 |68 | 132|260 | 516 | 1028 | 2048
601 415 | 81212036 |68 | 132|260 | 516 | 1028 | 2048
641 21419 122036 | 68| 132|260 | 516 | 1028 | 2048
857 214191122036 |68 | 132|260 | 516 | 1028 | 2048
881 316 | 8 |12]20 36|68 | 132|260 | 516 | 1028 | 2048
929 2|4 111220 |36 |68 | 132|260 | 516 | 1028 | 2048
7 2|4 110]12 |20 |36 |68 | 132 | 260 | 516 | 1028 | 2048

23 214 1012 |20 36| 68| 132|260 | 516 | 1028 | 2048
31 316 | 8 |12]20|36 |68 | 132|260 | 516 | 1028 | 2048
47 316 | 8 |12]20 36|68 | 132|260 | 516 | 1028 | 2048
127 416 | 812|120 |36 |68 | 132|260 | 516 | 1028 | 2048
151 2|4 111220 |36 |68 | 132 | 260 | 516 | 1028 | 2048
167 2] 4 1012|2036 | 68| 132|260 | 516 | 1028 | 2048
223 716 | 8122036 |68 | 132|260 | 516 | 1028 | 2048
271 31 7| 8| 12]20]36 |68 | 132|260 | 516 | 1028 | 2048
311 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
359 2|4 111220 |36 |68 | 132 | 260 | 516 | 1028 | 2048
383 316 | 81212036 |68 | 132|260 | 516 | 1028 | 2048
463 3110 8 | 1220 | 36 | 68 | 132 | 260 | 516 | 1028 | 2048
607 316 | 8 |12]20]36 |68 | 132|260 | 516 | 1028 | 2048
727 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
743 2|4 110]12 |20 |36 |68 | 132|260 | 516 | 1028 | 2048
823 2|4 110]12 |20 |36 |68 | 132 | 260 | 516 | 1028 | 2048
863 316 | 8 |12]20 36|68 | 132|260 | 516 | 1028 | 2048
887 214 1112|2036 |68 | 132|260 | 516 | 1028 | 2048
983 2|4 111220 |36 |68 | 132|260 | 516 | 1028 | 2048
991 316 | 8 |12]20 |36 |68 | 132|260 | 516 | 1028 | 2048
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Table 4: ords(h,,) for p = 25601 (f, = 6).

n

6
01| 2 |3]4]| 5 ]|6~8 ! 0|12 |3] 4|5 ]|6~8
x1 4161019 |26 |42 | 64 31 3|78 1212036 | 64
41 2141 8 (16|26|42| 64 47 3168 1212036 | 64
73 31959 |17]26| 42| 64 71 214112112120 |36 | 64
89 5(9| 9 |17]126| 42| 64 103 21411012120 |36 | 64
97 2141 8 [16|26|42| 64 151 21411012120 |36 | 64
193 2141 8 [16|26]|42| 64 191 3|71 8 [12120 36| 64
241 2141 8 [16|26]|42| 64 199 214112112120 |36 | 64
281 41519 |17 |26 42| 64 239 3168 |12]20 36| 64
313 2141 8 (16|26]|42| 64 263 21411012120 |36 | 64
337 41519 | 17|26 | 42| 64 271 3168 |12]20 |36 | 64
993 31611 |18]26 |42 | 64 311 21411012120 |36 | 64
641 2141 8 [16|26]|42| 64 359 214112112120 |36 | 64
761 214| 8 |16]26|42 | 64 367 3168 1212036 | 64
769 214 8 |16]26|42 | 64 431 318 8 |12]20 |36 | 64
809 214| 8 |16]26|42 | 64 503 214112112120 |36 | 64
929 2141 8 [16|26]|42| 64 599 21411012120 |36 | 64
953 2141 8 [16|26]|42| 64 647 21411012120 |36 | 64
977 214| 8 |16]26|42 | 64 719 57| 8 12120 |36 | 64
727 21411012120 |36| 64
743 214115112120 |36 | 64
751 3168 1212036 | 64
823 21411012120 |36 | 64
863 316 8 1212036 | 64
919 21411012120 |36 | 64
967 214115112120 |36 | 64
991 316 8 1212036 | 64
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Table 5: (

n

£ bE) with f, > 5.

p 7
o p ep | Fp | (ng,b7) | (ny,by)
11 | 65537 | 15| 5 (3,4) (3,4)
8 159393 | 10 | 3 (2,2) (2,3)
6 | 6529 | 6 | 1 (3,5) (3,4)
6 | 25601 | 9 | 4| (4,10) (3,4)
6 | 50177 | 9 | 4 (2,2) (2,2)
6 196001 | 7 | 2 (2,2) (2,3)
5 15809 | 5 | O (2,3) (2,2)
5 121569 | 5 | 1 (2,3) (2,2)
5 135201 | 6 | 2 (3,5) (2,2)
5 | 45697 | 6 | 2 (3,6) (2,2)
5 | 50753 | 5 | 1 (3,6) (4,10)
5 53633 | 6 | 2 (2,2) (2,2)
5 | 83777 5 | 0 (2,3) (3,5)
5 1927371 5 | 0 (3,4) (3,6)
5 193377 5 | 0 (2,2) (2,2)

Table 6: The number of primes with the ords(hy) =i (p < 10°, f, > 5).

vl 17 18 19 20 21 22 23 24 25 26
0 | 48078 | 25053 | 12771 | 6409 | 3281 | 1576 | 822 | 384 | 212

1| 27 28 29 30 31 32 33 34 | > 35
120 o6 24 13 8 2 2 2 0
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Table 7: ordy(h,,) for six primes with the ordy(hy) > 32.

p

€p

Kp

(

nt. b

)

PP

z " 0 1 P 3 4 5
676199297 || 6 1 (5,16)

«1 1 6 10 18 32 48

73 4 6 10 18 39 48

113 4 5 9 17 32 48

137 p 4 8 16 33 48
8163873080 | 6 2 —

1 4 6 10 18 32 32

17 9 4 8 16 35 32

89 8 5 9 17 32 39

97 9 4 8 16 33 32
574717313 | 6 1 (5,17)

) 1 6 10 18 33 49

73 8 7 12 20 33 49

193 9 4 8 16 32 49

933 4 5 9 17 37 49
640935553 || 6 0 (5,17)

«1 5 10 12 20 33 49

17 9 4 8 16 32 49

11 9 4 8 16 32 49

89 3 6 18 20 33 49
156731329 | 5 0 -

1 7 8 12 20 34

41 9 4 8 16 32

89 4 5 9 17 33

97 P 4 8 16 39
579604033 | 5 0 —

") 1 6 10 18 34

A1 9 4 8 16 32

73 4 8 14 29 35

89 3 9 10 18 34
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Table 8: ords(h,) for Dai-

J2%; ep Kp (n1,be) i P4, ep Kp (n1,be) i
| "o 1 2 3|, 1o 1 2 3
2593 4 0 (2,2) | 18 598817 4 0 (3.7 | 23
7 2 6 6 10 31 3 6 11 15
23 p 6 6 10 103 2 4 8 15
127 4 4 6 10 127 5 6 10 15
26849 4 0 23) | 19 31649 4 0 — 24
31 5 8 7 11 31 3 6 12 16
71 p 4 7 11 167 2 4 8 17
79 4 6 7 11 9223 10 9 12 16
10657 4 0 34) | 20 476513 4 0 - 25
7 2 4 12 12 23 2 A 8 16
31 3 8 8 12 31 3 9 10 17
47 3 6 8 12 103 2 4 8 16
68449 4 0 (3,5) | 2L 572321 4 0 — 2%
7 2 4 8 13 31 3 7 10 19
79 3 8 9 13 71 2 4 8 16
103 P 4 8 13 103 2 4 8 16
138977 4 0 3.6) | 22
7 P 4 8 14
23 P 4 8 14
A7 3 8 14 14
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