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Abstract

Let p be an odd prime number and 2e+1 be the highest power of
2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of
conductor p and degree 2n. For a certain imaginary quadratic field
L0, we put Ln = L0kn. For 0 ≤ n ≤ e − 1, let Fn be the imaginary
quadratic subextension of the imaginary (2, 2)-extension Ln+1/kn with
Fn ̸= Ln+1. We study the Galois module structure of the 2-part of
the ideal class group of the imaginary cyclic field Fn. This generalizes
a classical result of Rédei and Reichardt for the case n = 0.

1 Introduction

Let e ≥ 2 be a fixed integer, and let p = 2e+1q + 1 be a prime number with
2 ∤ q. For each 0 ≤ n ≤ e + 1, we denote by kn the subfield of of the pth
cyclotomic field Q(ζp) of degree 2n. Here, for an integer m ≥ 2, ζm denotes
a primitive mth root of unity. We denote by P the set of prime numbers ℓ
satisfying (p

ℓ

)
= −1 and ℓ ≡ ±1 mod 8. (1.1)

Let L0 = Q(
√
−2), Q(

√
2) or Q(

√
−2ℓ) for ℓ ∈ P, and put Ln = L0kn. For

each 0 ≤ n ≤ e, Ln+1/kn is a (2, 2)-extension with quadratic subextensions
Ln+1 and kn+1. The subject of this paper is the third quadratic subextension
Fn of Ln+1/kn. It is a cyclic field of degree 2n+1, whose conductor is 8p or 8pℓ
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according as L0 = Q(
√
±2) or Q(

√
−2ℓ). When n = 0, we have accordingly

F0 = Q(
√
±2p) or Q(

√
−2pℓ). The cyclic field Fn is imaginary when L0

is an imaginary quadratic field and 0 ≤ n ≤ e − 1 or when L0 = Q(
√
2)

and n = e. For a number field N , hN and AN denote the class number and
the 2-part of the ideal class group ClN of N in the usual sense, respectively.
For a CM field N , let Cl−N be the kernel of the norm map ClN → ClN+ ,
and let h−

N = |Cl−N | be the relative class number and A−
N the 2-part of Cl−N ,

respectively. Here, N+ is the maximal real subfield of N . When N = Fn is
imaginary, we put hn = hN , h

−
n = h−

N , An = AN and A−
n = A−

N , for brevity.
Since F+

n = kn and the class number hkn is odd (Washington [15, Theorem
10.4]), we see that

ord2(hn) = ord2(h
−
n ) and An = A−

n ,

where ord2(∗) is the 2-adic additive valuation on Q with ord2(2) = 1. The
main purpose of this paper is to study the Galois module structure of the
class group An for those n where Fn is imaginary. When n = 0, it is well
known that

A0
∼= Z/2j or Z/2⊕ Z/2j (1.2)

with j ≥ 2 according as L0 = Q(
√
−2) or Q(

√
−2ℓ), which is due to Rédei

and Reichardt [13]. We generalize this result for the case n ≥ 1. There are
many other results on the 2-part of the class group of F0 or other quadratic
fields such as [1, 7, 9, 11, 16].

To state our results, let us introduce some notation. Let Γn = Gal(Fn/Q)
and Rn = Z2[Γn], where Z2 is the ring of 2-adic integers. We fix a generator
γn of the cyclic group Γn of order 2n+1. Let Λ = Z2[[T ]] be the 2-adic
power series ring with indeterminate T . We identify the group ring Rn with
Λ/((1 + T )2

n+1 − 1) by the correspondence γn ↔ 1 + T :

Rn = Λ/((1 + T )2
n+1 − 1).

The class group An is naturally regarded as a module over Rn, and hence
as a module over Λ. We see that (1 + T )2

n
+ 1 annihilates the Λ-module

An = A−
n .

The class number hn is always even when L0 = Q(
√
−2ℓ) (and 0 ≤ n ≤

e− 1) by Proposition 1.1 in the below. We define an integer h̄n by

h̄n = hn or
hn

2
(1.3)
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according as L0 = Q(
√
±2) or Q(

√
−2ℓ). There are many cases where

ord2(h̄n) ≥ 2n + 1. For instance, this inequality holds when n = 0 by (1.2).
In such a case, we put

sn =

⌈
ord2(h̄n)

2n

⌉
(1.4)

and
an = 2nsn − ord2(h̄n) and bn = 2n − an. (1.5)

Here, ⌈x⌉ denotes the smallest integer ≥ x. Then, sn ≥ 2, an ≥ 0 and bn ≥ 1.
For instance, when n = 0, we have

s0 = ord2(h̄0), a0 = 0, b0 = 1. (1.6)

Further, we define an ideal Θn of Λ by

Θn = (2sn , 2sn−1T bn , (1 + T )2
n

+ 1) ⊂ Λ. (1.7)

We easily see that

Λ/Θn
∼= (Z/2sn−1)⊕an ⊕ (Z/2sn)⊕bn (1.8)

as abelian groups. For the ideal Θn, we often write Θn(d) with d = −2,
2 or −2ℓ when they are associated to L0 = Q(

√
−2), Q(

√
2) or Q(

√
−2ℓ),

respectively.
Let κp be the smallest nonnegative integer κ such that p splits completely

in Q(21/2
e−κ+1

). It is known that 0 ≤ κp ≤ e and that for any i with 0 ≤ i ≤ e,
there exist infinitely many prime numbers p of the form p = 2e+1q + 1 with
2 ∤ q for which κp = i ([5, Lemma 1]). We put

f̃ = e− κp + 1 (≥ 1) and f = min {f̃ , e}

When κp ≥ 2, we have f = f̃ ≤ e − 1. In the following, we simply write
“f ≤ n ≤ e− 1” when κp ≥ 2 and f ≤ n ≤ e− 1. It is known that the prime
2 splits completely in kf̃/Q and the primes over 2 remain prime in ke+1/kf̃
([5, Lemma 3]).

Now we can state our results. As the case L0 = Q(
√
2) is dealt with in [5],

L0 denotes Q(
√
−2) or Q(

√
−2ℓ) in the rest of this section unless otherwise

stated. As we mentioned before, Fn is imaginary for 0 ≤ n ≤ e − 1. For a
finite abelian group A and an integer t ≥ 1, let

r2t(A) = dimF2 2
t−1A/2tA

be the 2t-rank of A.
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Proposition 1.1. The 2-rank r2(An) equals 2
n or 1+2n when 0 ≤ n ≤ f−1

and 2f or 1+2f when f ≤ n ≤ e−1 according as L0 = Q(
√
−2) or Q(

√
−2ℓ).

Proposition 1.2. The 4-rank r4(An) is positive if and only if 0 ≤ n ≤ f−1.

Let h̄n be, as in (1.3), hn or half of hn. When 0 ≤ n ≤ f − 1, it follows
from these propositions that ord2(h̄n) ≥ 2n + 1, and hence the integers sn,
an, bn and the ideal Θn of Λ are defined by (1.4), (1.5) and (1.7).

Theorem 1.1. When f ≤ n ≤ e− 1, the Λ-module An is isomorphic to

Λ/(2, T 2f ) or Λ/(2, T )⊕ Λ/(2, T 2f )

according as L0 = Q(
√
−2) or Q(

√
−2ℓ).

Theorem 1.2. When 0 ≤ n ≤ f − 1, the Λ-module An is isomorphic to

Λ/Θn(−2) or Λ/(2, T )⊕ Λ/Θn(−2ℓ)

according as L0 = Q(
√
−2) or Q(

√
−2ℓ).

When n = 0, we see from (1.6) and (1.8) that Theorem 1.2 is a Galois
module version of the classical result (1.2) of Rédei and Reichardt for the
imaginary quadratic field F0. Thus Theorem 1.2 combined with (1.8) is a
generalization of (1.2). For comparison, we recall here some results in [5,
Theorems 1, 2, Proposition 2] for the case L0 = Q(

√
2). In this case, Fn is

imaginary only when n = e.

Theorem 1.3 ([5]). Let L0 = Q(
√
2).

(i) Assume that κp ≥ 1. Then, the Λ-module Ae is isomorphic to Λ/(2, T 2e−κp+1
).

(ii) Assume that κp = 0. Then, r2(Ae) = 2e, and ord2(h̄e) = 5 when e = 2
and ord2(h̄e) ≥ 2e + 2 when e ≥ 3. Further, the Λ-module Ae is isomorphic
to Λ/Θe(2).

By definition, the integers sn, an and bn depend on L0. We computed
the values of ord2(h̄n) for various L0. We are surprised to find that there
are several cases where these integers behave in quite a regular way when n
moves and that they do not depend on the choice of L0. (See Tables 3 and 4
in Section 8.) For instance, for p = 65537 = 216 + 1, we have e = 15, κp = 5,
f = 11 and

ord2(h̄n) = 12, 20, 36, 68, 132, 260, 516, 1028
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with n = 3, 4, 5, 6, 7, 8, 9, 10, respectively, when L0 = Q(
√
−2) and

Q(
√
−2ℓ) for ℓ ∈ P with ℓ < 1000. There are 42 such L0’s. By (1.4) and

(1.5), this implies that

(sn, an, bn) = (2, 2n − 4, 4) and ord2(h̄n) = 2n + 4

for these n and L0. In particular, it follows from (1.8) that the 4-rank r4(An)
equals 4 for these n and L0. On the other hand, the value ord2(h̄0) ranges
over the integers 2 ∼ 8, ord2(h̄1) = 4 ∼ 10 and ord2(h̄2) = 8 ∼ 13. Further,
for various numerical data, see Section 8. These examples lead us to prove
the following theorems on the 4-rank of An. By virtue of Proposition 1.2,
it suffices to deal with the case where f ≥ 2 and 0 ≤ n ≤ f − 1. Thus,
we assume f ≥ 2 in the following. Further, by Theorem 1.2 and (1.8), we
already know that r4(An) ≤ 2n and that the following equivalence holds for
these n:

r4(An) < 2n ⇐⇒ sn = 2 and bn < 2n (1.9)

⇐⇒ ord2(h̄n) < 2n+1.

To state the theorems, it is convenient to divide the set P of prime numbers
ℓ satisfying (1.1) into two classes. Let P+ (resp. P−) be the subset of P
consisting of those ℓ with ℓ ≡ 1 mod 8 (resp. ℓ ≡ −1 mod 8).

Theorem 1.4. When the base field L0 moves over the quadratic fields Q(
√
−2)

and Q(
√
−2ℓ) with ℓ ∈ P+, the following assertions hold.

(i) For 0 ≤ n ≤ f − 1, the 4-rank r4(An) depends only on n, and not on
individual L0’s.

(ii) Assume that there exists some 1 ≤ n ≤ f − 1 for which r4(An) < 2n

(or equivalently, sn = 2 and bn < 2n). Let n+
p ≥ 1 be the smallest such

integer, and put b+p = bn+
p
(< 2n

+
p ). Then, b+p ≥ 2n

+
p −1, and

(sn, an, bn) = (2, 2n − b+p , b
+
p ) and ord2(h̄n) = 2n + b+p

for any n with n+
p ≤ n ≤ f − 1 and for L0 = Q(

√
−2) and L0 = Q(

√
−2ℓ)

with any ℓ ∈ P+. Further, r4(An) = 2n for 0 ≤ n ≤ n+
p − 1.

Theorem 1.5. When the base field L0 moves over the quadratic fields Q(
√
−2ℓ)

with ℓ ∈ P−, the following assertions hold.
(i) For 0 ≤ n ≤ f − 1, the 4-rank r4(An) depends only on n, and not on
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individual L0’s.
(ii) Assume that there exists some 1 ≤ n ≤ f − 1 for which r4(An) < 2n

(or equivalently, sn = 2 and bn < 2n). Let n−
p ≥ 1 be the smallest such

integer, and put b−p = bn−
p
(< 2n

−
p ). Then, b−p ≥ 2n

−
p −1, and

(sn, an, bn) = (2, 2n − b−p , b
−
p ) and ord2(h̄n) = 2n + b−p

for any n with n−
p ≤ n ≤ f − 1 and for L0 = Q(

√
−2ℓ) with any ℓ ∈ P−.

Further, r4(An) = 2n for 0 ≤ n ≤ n−
p − 1.

For the above mentioned example p = 65537, we have (n+
p , b

+
p ) = (n−

p , b
−
p ) =

(3, 4). We will see in Section 8 that there are cases where (n+
p , b

+
p ) ̸= (n−

p , b
−
p ).

In contrast to Theorem 1.4, Theorem 1.5 does not deal with Q(
√
2). This is

because when L0 = Q(
√
2), Fn is imaginary only for n = e. The following

theorem recovers this weak point when κp = 0.

Theorem 1.6. Let L0 = Q(
√
2), and assume that κp = 0 (so that f = e).

(i) Assume that r4(Ae) < 2e−1. Let n1 ≥ 1 be the smallest integer such
that be < 2n1. Then, the assumption of Theorem 1.5(ii) is satisfied, and the
assertion of Theorem 1.5(ii) holds with (n−

p , b
−
p ) = (n1, be).

(ii) Assume that r4(Ae) ≥ 2e−1. Then, we have r4(An) = 2n for any
0 ≤ n ≤ e − 1 and for L0 = Q(

√
−2ℓ) with any ℓ ∈ P−. Hence, the

assumption of Theorem 1.5(ii) is not satisfied.

We will see in Section 8 that there are cases where the assumption in
Theorem 1.4(ii) or Theorem 1.5(ii) is not satisfied and that the two cases in
Theorem 1.6 actually occur. We know that r4(A1) = 1 or 2 by (1.9) (and
f ≥ 2). We can determine r4(A1) as follows.

Theorem 1.7. (I) When L0 = Q(
√
−2) or Q(

√
−2ℓ) with ℓ ∈ P+, we have

r4(A1) = 2. Hence, under the assumption of Theorem 1.4(ii), we have n+
p ≥ 2

and b+p ≥ 2.

(II) When L0 = Q(
√
−2ℓ) with ℓ ∈ P−, we have r4(A1) = 2 if and only

if e ≥ 3. Hence, under the assumption of Theorem 1.5(ii), we have n−
p = 1

and b−p = 1 when e = 2, and n−
p ≥ 2 and b−p ≥ 2 when e ≥ 3.

This paper is organized as follows. In Section 2, we give some propositions
and remarks related to the theorems. In Section 3, we show some technical
lemmas which are necessary to prove the theorems. In Section 4, we study
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some basic properties of the tower ke+1/Q, which are key for proving our
results. We prove Theorems 1.1, 1.2, 1.4 and 1.5 in Section 5, Theorem 1.6
in Section 6, and Theorem 1.7 in Section 7. In Section 8, we give several
numerical data related to Theorems 1.1–1.7.

2 Related propositions and remarks

Let p = 2e+1q + 1 be a prime number with 2 ∤ q. Letting L0 = Q(
√
−2) or

Q(
√
−2ℓ) with ℓ ∈ P, we use the same notation as in Section 1. In particular,

for 0 ≤ n ≤ e + 1, kn is the subfield of Q(ζp) of degree 2n, and Ln = L0kn.
We see from the class number formula [15, Theorem 4.17] that the relative
class numbers h−

Ln
and h−

n = h−
Fn

are related by

h−
n = 2×

h−
Ln+1

h−
Ln

, (2.1)

for 0 ≤ n ≤ e. Here, we have used the fact that the unit indices of Ln and
Fn are 1 (Conner and Hurrelbrink [2, Lemma 13.5]). We see that the class
numbers h−

Ln
enjoy Iwasawa type “class number formula” from (2.1) and our

results on the class group An.

Proposition 2.1. For f+1 ≤ n ≤ e, ord2(h
−
Ln
) equals (2f−1)n+ν or 2fn+ν

according as L0 = Q(
√
−2) or Q(

√
−2ℓ) with some integer ν depending on p

and L0.

Proposition 2.2. Under the setting and the assumption in Theorem 1.4(ii)
or 1.5(ii), for n±

p + 1 ≤ n ≤ f , ord2(h
−
Ln
) equals 2n + (b±p − 1)n + ν or

2n + b±p n + ν according as L0 = Q(
√
−2) or Q(

√
−2ℓ) (ℓ ∈ P±) with some

integer ν depending on p and L0.

For example, when p = 65537, we have ord2(h
−
Ln
) = 2n+4n+ ν with 4 ≤

n ≤ 11 and ord2(h
−
Ln
) = 211n+ν ′ with 12 ≤ n ≤ 15 for every L0 = Q(

√
−2ℓ)

with ℓ ∈ P.

Proofs of Propositions 2.1 and 2.2. For f + 1 ≤ n ≤ e, we see
from (2.1) that

ord2(hL−
n
) =

n−1∑
j=f

ord2

(
h−
n

2

)
+ ord2(hL−

f
).
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By Propositions 1.1 and 1.2, ord2(h
−
n ) = 2f or 2f + 1 according as L0 =

Q(
√
−2) or Q(

√
−2ℓ). From this, we obtain Proposition 2.1. Under the

setting and the assumption of Theorem 1.4(ii) or Theorem 1.5(ii), we see
from the theorem that for n±

p ≤ n ≤ f − 1, ord2(h
−
n ) = 2n+ b±p or 2n+ b±p +1

according as L0 = Q(
√
−2) or Q(

√
−2ℓ). From this and (2.1), we obtain

Proposition 2.2.

Remark 2.1. Let us refer to the papers of Ferrero [3] and Kida [8]. Let
B∞/Q be the cyclotomic Z2-extension, and Bn its nth layer with n ≥ 0. Let
N be an imaginary quadratic field, and put Nn = NBn with 0 ≤ n ≤ ∞. Let
Fn be the imaginary quadratic subextension of the (2, 2)-extension Nn+1/Bn

with Fn ̸= Nn+1. Ferrero and Kida independently computed the Iwasawa
lambda invariant of the cyclotomic Z2-extension N∞/N by studying the 2-
part of the class group of Fn for sufficiently large n. Propositions 2.1 and 2.2
for the finite tower Le/L0 are analogous to the above classical result for the
Z2-tower N∞/N .

Remark 2.2. In Proposition 2.2, the “µ-invariant” is positive ! This is
because the prime 2 splits completely in kf/Q and ramifies in L0. Let us
recall here a paper [6] of Iwasawa, where he constructed (non-cyclotomic)
Zp-extensions with positive µ-invariants. Our reason for positive µ is almost
the same to that in [6].

Remark 2.3. Iwasawa type “class number formula” is already known for a
finite tower inside the pth cyclotomic field in Example in Lehmer [10, page
607], a table in Schoof [12, Appendix] and [4, Theorem 3]. For this “formula”,
the “µ-invariant” is zero.

Remark 2.4. For 0 ≤ n ≤ e − 1, we see that p splits completely in
Q(21/2

n+1
)/Q if and only if 0 ≤ n ≤ f−1. This is because p splits completely

in Q(21/2
f̃
) and the primes over p remains prime in Q(21/2

e+1
)/Q(21/2

f̃
) ([5,

Lemma 3]). Therefore, Proposition 1.2 says that the 4-rank of An is positive
if and only if p splits completely in Q(21/2

n+1
). This assertion is analogous to

several classical results on “governing field” for the 2-part of the class group
of quadratic fields such as those in [1, 11, 16].

Remark 2.5. Under the setting and the assumption of Theorem 1.4(ii) or
Theorem 1.5(ii), the theorem implies that r4(An) = 2n for 0 ≤ n ≤ n±

p − 1
and r4(An) = b±p for n±

p ≤ n ≤ f−1. On the other hand, Yue [18] generalized
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a result of Rédei [14] and gave a formula for the 4-rank of the class group of
a relative quadratic extension. It would be possible to derive Proposition 1.2
and the above mentioned result on r4(An) from his formula using the results
in Sections 3 and 4 and Lemmas 5.1, 5.2 of this paper.

3 Some lemmas

In this section, we collect several lemmas which are necessary to prove the
theorems. Some of them are known to specialists. For a number field N , let
ON be the ring of integers of N , and EN = O×

N the group of units of N . The
following lemma is given in [5, Lemma 6].

Lemma 3.1. Let k be a totally real number field of degree n. Assume that
the narrow class number of k is odd and that the prime 2 splits completely in
k; 2 = q1 · · · qn. Then, the map

Ek → (Ok/4)
× = (Ok/q

2
1)

× ⊕ · · · ⊕ (Ok/q
2
n)

×; ϵ → ϵ mod 4

is surjective.

For a CM fieldN with its maximal real subfield N+, an ideal class c ∈ ClN
is ambiguous when cJ = c where J is the nontrivial automorphism of N over
N+. The number of ambiguous classes is denoted by a(N), and is given by
the following lemma (see Yokoi [17]).

Lemma 3.2. For a CM field N ,

a(N) = hN+ × 2tN−1

[EN+ : EN+ ∩N (N×)]
.

Here, tN is the number of prime divisors of N+ (finite or infinite) which are
ramified in N , and N is the norm map form N to N+.

Let M/F be the Hilbert 2-class field of a number field F , namely, the
class field corresponding to AF = ClF (2). Via the reciprocity law map, we
identify AF with Gal(M/F ):

AF = Gal(M/F ); c ↔ ρc.

Here, ρc is the Frobenius automorphism associated to the ideal class c. Let
K/F be an unramified quadratic extension, and let B = Gal(M/K) ⊂ AF .
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Clearly, B2 ⊆ A2
F . For an abelian group A, let 2A be the subgroup of A

consisting of elements c ∈ A with c2 = 1. The following lemma has its origin
in [13], and is used repeatedly for studying the 4-rank of quadratic fields.

Lemma 3.3. Under the above setting, the following three conditions are
equivalent with each other.

(i) The unramified quadratic extension K/F extends to an unramified
cyclic quartic extension.

(ii) For any c ∈ 2AF , the automorphism ρc is trivial on K.
(iii) B2 ⊊ A2

F .

Proof. First, we show (i) ⇒ (ii). Assume that K/F extends to an
unramified cyclic quartic extension N/F . Then, for c ∈ 2AF , the restriction
ρc|N ∈ Gal(N/F ) is trivial or of order 2. This implies that the restriction
ρc|K to the quadratic subextension K of the cyclic extension N/F is trivial.
Next, to show (ii) ⇒ (iii), assume to the contrary that B2 = A2

F . Choose an
element c ∈ AF such that ρc is nontrivial on K. Then, as B2 = A2

F , there
exists c1 ∈ B with c21 = c2. Let d = cc−1

1 . Then, d2 = 1 and hence d ∈ 2AF .
However, we see that ρd is nontrivial on K because ρc is nontrivial and ρc1 is
trivial on K. Finally, to show (iii) ⇒ (i), assume again to the contrary that
K/F never extends to an unramified cyclic quartic extension. Let MA/F
(resp. MB/K) be the subextension of M/F (resp. M/K) corresponding to
A2

F (resp. B2) by Galois theory. As B ⊂ AF , we have MA ⊆ MB. Let N/K
be a quadratic subextension of MB/K. Then, from the assumption, we see
that the abelian quartic extension N/F is a (2, 2)-extension. This implies
that N ⊆ MA, and hence MB ⊆ MA. Therefore, we obtain MA = MB, and
hence B2 = A2

F .

Remark 3.1. Let qi (1 ≤ i ≤ r) be some prime ideals of F , and let t be an
odd integer. When 2AF is generated by the ideal classes [qti], the condition
(ii) in Lemma 3.3 holds if and only if these prime ideals qi split in K/F .

The following lemma is well known ([15, Exercise 9.3]).

Lemma 3.4. Let q be a prime ideal of F over 2. Let K = F (
√
w) be a

quadratic extension with w ∈ F× relatively prime to q. Let a ≥ 1 be an
integer with qa∥2. Then, (i) the prime ideal q is unramified in K if and only
if w ≡ u2 mod q2a for some u ∈ OF , and (ii) it splits in K if and only if
w ≡ u2 mod q2a+1 for some u ∈ OF .
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As in Section 1, let Λ = Z2[[T ]]. Let A be a finite cyclic Λ-module with
h̄ = |A|. Denote by IA ⊂ Λ the annihilator of the Λ-module A so that
A ∼= Λ/IA as Λ-modules. Assume that (i) j = (1 + T )2

n
acts on A via (−1)-

multiplication and that (ii) r2(A) = 2n but ord2(h̄) ≥ 2n+1. The assumption
(i) implies that (1 + T )2

n
+ 1 ∈ IA. As in (1.4) and (1.5), we put

s =

⌈
ord2(h̄)

2n

⌉
, a = 2ns− ord2(h̄), b = 2n − a,

so that we have s ≥ 2, a ≥ 0 and b ≥ 1. The following algebraic assertion is
essentially contained in [5, Proposition 3].

Lemma 3.5. Under the above setting and assumptions, we have

IA = (2s, 2s−1T b, (1 + T )2
n

+ 1),

and hence
A ∼= (Z/2s−1)⊕a ⊕ (Z/2s)⊕b (3.1)

as abelian groups.

Proof. We can write

A =
r⊕

i=1

(Z/2i)⊕ti

as abelian groups for some integers r ≥ 1, ti ≥ 0 (1 ≤ i ≤ r − 1) and tr ≥ 1.
As the 2-rank of A is 2n, we have

r∑
i=1

ti = 2n, and
r∑

i=1

iti = ord2(h̄). (3.2)

We see that r ≥ 2 as ord2(h̄) ≥ 2n + 1. We observe that

B := A2r−2

= (Z/2)⊕tr−1 ⊕ (Z/4)⊕tr , and 1 ≤ tr−1 + tr ≤ 2n.

Let IB ⊂ Λ be the annihilator of the cyclic Λ-module B. Then, we see
immediately from [5, Proposition 3] that tr−1 + tr = 2n and

IB = (4, 2T tr , (1 + T )2
n

+ 1). (3.3)

11



It follows from (3.2) that ti = 0 for 1 ≤ i ≤ r − 2 and that

tr−1 + tr = 2n and (r − 1)tr−1 + rtr = ord2(h̄).

Then, noting that tr ≥ 1, we observe that r = s, tr−1 = a and tr = b from
the very definitions of s, a and b. Therefore, we obtain the assertion (3.1) on
the abelian group A. Noting that B = A2r−2

with r = s, we see from (3.3)
that the ideal I of Λ generated by 2s, 2s−1T b and (1 + T )2

n
+ 1 is contained

in IA. Since the abelian group Λ/I is isomorphic to the righthand side of
(3.1), we obtain I = IA.

4 Arithmetic of the tower ke/Q
We use the same notation as in the previous sections. In particular, p =
2e+1q + 1 is a prime number with 2 ∤ q, and kn is the subfield of Q(ζp) of
degree 2n. In what follows, we let

h = hke

be the class number of ke, which is odd by [15, Theorem 10.4]. The class
number of kn for n ≤ e is a divisor of h because ke/Q is totally ramified at
p. Let pn be the unique prime ideal of kn over p, so that we have (p) = p2

n

n .
For 0 ≤ n ≤ e, there is an element dn of kn such that kn+1 = kn(

√
dn). The

element dn is totally positive when 0 ≤ n ≤ e− 1, and it is totally negative
when n = e. Since kn+1/kn is ramified only at pn and h is odd, we can choose
dn so that it satisfies

(dn) = phn and dn ≡ u2 mod 4 (4.1)

for some u ∈ Okn . Here, the last congruence holds by Lemma 3.4(i). Further,
as 2 splits completely in kf̃/Q and the primes over 2 remain prime in ke+1/kf̃
([5, Lemma 3]), we see from Lemma 3.4(ii) that

dn ≡ 1 mod 8 for 0 ≤ n ≤ f̃ − 1 (4.2)

but
dn ̸≡ u2 mod 8 for f̃ ≤ n ≤ e (4.3)

for any u ∈ Okn . Further, we have

Fn = kn(
√

2dn), kn(
√

−2dn) or kn(
√

−2ℓdn)

12



according as L0 = Q(
√
2), Q(

√
−2) or Q(

√
−2ℓ).

We put Gn = Gal(kn/Q), which is a cyclic group of order 2n. We fix a
prime ideal qf of kf over 2, and for 0 ≤ n ≤ f , we put qn = Nf/nqf . Here,
Nf/n denotes the norm map from kf to kn. Then, qn is a prime ideal of kn
over 2, and

(2) =
∏
σ∈Gn

qσn.

When (f ≤ e − 1 and) f + 1 ≤ n ≤ e, we denote the unique prime ideal of
kn over qσf with σ ∈ Gf by the same symbol qσf . Now, we choose and fix a
prime number ℓ ∈ P. We put

2∗ =

{
−2, when L0 = Q(

√
−2) or Q(

√
−2ℓ) with ℓ ∈ P+,

2, when L0 = Q(
√
2) or Q(

√
−2ℓ) with ℓ ∈ P−,

and

ℓ∗ =

{
ℓ, when ℓ ∈ P+,
−ℓ, when ℓ ∈ P−.

Then, we have

2∗ℓ∗ = −2ℓ, ℓ∗ ≡ 1 mod 8, and

(
ℓ∗

p

)
= −1

for every ℓ in P = P+ ⊔P−. As hke+1 is odd, the narrow class number of kf is
odd. Therefore, by Lemma 3.1, we can choose an element ω of kf such that
qhf = (ω) and

ω

(2∗)h
≡ 1 mod q2f and ω ≡ 1 mod (qσf )

2

for σ ∈ Gf with σ ̸= 1f . Here, 1n denotes the identity element of Gn. For
0 ≤ n ≤ f − 1, we put ωn = Nf/nω. Then we see that qhn = (ωn) and

ωn

(2∗)h
≡ 1 mod q2n and ωn ≡ 1 mod (qσn)

2 (4.4)

for σ ∈ Gn with σ ̸= 1n. When f ≤ n ≤ e and L0 = Q(
√
±2), we simply

set ωn = ω. When f ≤ n ≤ e and L0 = Q(
√
−2ℓ), we set ωn = ω or

ℓ∗ω according as ω is a quadratic residue module pf or not, so that ωn is
a quadratic residue module pn by (1.1). Then, in any case, we see that ωn

satisfies the congruence (4.4) for any 0 ≤ n ≤ e as ℓ∗ ≡ 1 mod 8 and that

ωn ≡ Nf/nωf mod (k×
n )

2 (4.5)

for 0 ≤ n ≤ f − 1. From the above, we obtain

13



Lemma 4.1. When L0 = Q(
√
−2ℓ) with ℓ ∈ P, ωn is a quadratic residue

modulo pn for each 0 ≤ n ≤ e.

Let Vn be the submodule of k×
n /(k

×
n )

2 generated by the class [ωn] over the
group ring F2[Gn], and letWn be the submodule of k×

n /(k
×
n )

2 generated by the
class [ℓ∗] and Vn. (We need the module Wn only for the case L0 = Q(

√
−2ℓ).)

We denote by Ṽn and W̃n the images of Vn and Wn under the lifting map
k×
n /(k

×
n )

2 → F×
n /(F×

n )
2, respectively.

Lemma 4.2. Under the above setting, we have

dimF2 Vn = dimF2 Ṽn = 2n or 2f ,

and
dimF2 Wn = dimF2 W̃n = 2n + 1 or 2f + 1

according as 0 ≤ n ≤ f − 1 or f ≤ n ≤ e.

Proof. We show the assertion only for Wn. The assertion for Vn is
shown similarly. We easily see that

dimF2 W̃n ≤ dimF2 Wn ≤ 2n + 1 or 2f + 1.

Hence, it suffices to show that the dimension of W̃n equals 2n + 1 or 2f + 1.
We show it only for case n = e. It is shown similarly for the other cases. Put

x = ℓs ×
∏
σ∈Gf

(ωσ
f )

tσ ∈ k×
f

with s, tσ = 0, 1. Assume that x is a square in Fe. Then, as Fe =
ke(

√
−2ℓde), we observe that x or y = −2ℓdex is a square in ke. When

x is a square in ke, the ideal

(x) = (ℓ)s+u ×
∏
σ∈Gf

(qσf )
htσ

is a square of an ideal of ke. Here, u = 0 or
∑

σ∈Gf
tσ according as ωf = ω or

ℓ∗ω. However, since ℓ and 2 are unramified in ke and h = hke is odd, we see
that s+ u is even and tσ = 0 for σ ∈ Gf , from which follows s = 0. Further,
since phe∥y and h is odd, y is not a square in ke.
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By Lemma 4.2 and (4.5), we see that the lifting map k×
n /(k

×
n )

2 → k×
n+1/(k

×
n+1)

2

induces an injection Vn → Vn+1, which is bijective for f ≤ n ≤ e− 1. There-
fore, letting V = Vf , we regard Vn as a submodule of V when 0 ≤ n ≤ f − 1,
and we identify Vn with V when f + 1 ≤ n ≤ e. We denote the group ring
F2[Gf ] by R:

R = F2[Gf ].

We also see from Lemma 4.2 that V = Vf = R · ωf is free and cyclic over R,
and we fix an isomorphism

ι : V → R (4.6)

sending ωf to the identity element 1f of Gf . For 0 ≤ n ≤ f , we denote the
element of R corresponding to the norm map Nf/n from kf to kn also by
Nf/n. Let Jn = (Nf/n) be the ideal of R generated by Nf/n. Then, by the
definition of Vn and (4.5), we obtain

ι(Vn) = Jn (4.7)

for 0 ≤ n ≤ f . Let ρ be a generator of the cyclic group Gf of order 2f .
For 0 ≤ i ≤ 2f , let Ui be the ideal of R generated by (1 + ρ)i. We have a
filtration

U0 = R ⊃ U1 ⊃ · · · ⊃ U2f−1 ⊃ U2f = {0}.

Lemma 4.3. (i) The ideals Ui are all the ideals of R, and dimF2 Ui = 2f − i
as a vector space over F2. In particular, the ideals of R are parametrized by
their dimensions over F2.

(ii) For 0 ≤ n ≤ f , Jn = U2f−2n and dimF2 Jn = 2n. In particular,
J0 = U2f−1 is the smallest nontrivial ideal of R.

Proof. The first assertion is shown in [5, Lemma 8]. Let us show

Nf/n =
2f−n−1∑
j=0

(1 + ρ2
n

)j = (1 + ρ)2
f−2n .

This is obvious for n = f . If this holds for n (≤ f), then we see that

Nf/(n−1) = (1 + ρ2
n−1

)Nf/n = (1 + ρ)2
n−1

(1 + ρ)2
f−2n = (1 + ρ)2

f−2n−1

,

and hence the equality holds for n − 1. Therefore, we obtain the second
assertion.

15



Consider an element α of kf of the form

α =
∏
σ∈Gf

(ωσ
f )

aσ with aσ = 0, 1

such that
α ≡ 1 mod (qσf )

3 or
α

(2∗)h
≡ 1 mod (qσf )

3 (4.8)

according as aσ = 0 or 1. Let Q be the submodule of V generated by the
classes [α] for all such α. We easily see that Q is a R-submodule of V . Since

(2∗)h ≡ Nf/0ωf mod (Q×)2, (4.9)

we see that [2∗] ∈ Q and that Q is nontrivial. We put Q = ι(Q) ⊆ R. This
is a nontrivial ideal of R. The following simple lemma on the ideal Q plays
a crucial role for showing Theorems 1.4–1.6.

Lemma 4.4. The ideal Q depends only on whether 2∗ = −2 or 2, and not
on individual L0’s.

Proof. The element ω ∈ kf defined by (4.4) depends only on whether
2∗ = −2 or 2. Since ωf = ω or ℓ∗ω and ℓ∗ ≡ 1 mod 8, the submodule Q
of V consisting of elements α satisfying (4.8) depends only on the value 2∗.
Hence, the ideal Q also depend only on the value of 2∗.

5 Proofs of Theorems 1.1, 1.2, 1.4 and 1.5

First, we introduce some notation which we use in Sections 5 and 6. The
prime ideals pn and qσn of kn ramify in Fn, where σ runs over the Galois group
Gn (resp. Gf ) when 0 ≤ n ≤ f − 1 (resp. f ≤ n ≤ e). We denote by Pn

and Qσ
n the prime ideals of Fn over pn and qσn, so that we have pn = P2

n and
qσn = (Qσ

n)
2 in Fn, respectively. When L0 = Q(

√
−2ℓ) with ℓ ∈ P, the prime

number ℓ remains in kn by (1.1), and ramifies in Fn. We denote by Ln the
prime ideal of Fn over (ℓ), so that we have (ℓ) = L2

n in Fn. For 0 ≤ n ≤ e,
we put

M1
n = Fn(

√
α
∣∣ [α] ∈ Ṽn).

When L0 = Q(
√
−2ℓ), we put

M0
n = Fn(

√
ℓ∗) and M2

n = M0
nM

1
n = Fn(

√
α
∣∣ [α] ∈ W̃n).
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These extensions of Fn play an important role for proving our theorems.

In the rest of this section, we prove Theorems 1.1, 1.2, 1.4 and 1.5 for
L0 = Q(

√
−2) or Q(

√
−2ℓ). So, n runs over 0 ≤ n ≤ e − 1. We begin with

showing Proposition 1.1.

Proof of Proposition 1.1. We show the assertion only for L0 = Q(
√
−2ℓ).

It is shown similarly for L0 = Q(
√
−2). We use Lemma 3.2 for the imaginary

cyclic field Fn = kn(
√
−2ℓdn) noting that F+

n = kn. Let gn be the number
of ambiguous classes in An, namely gn is the 2-part of the ambiguous class
number a(Fn). Let r be the 2-rank of AFn . Then we see that gn = 2r be-
cause a class c ∈ An = A−

n is ambiguous if and only if c2 = 1. Let E+
kn

be the
subgroup of Ekn consisting of totally positive units. Then it follows that

E2
kn ⊆ Ekn ∩N (F×

n ) ⊆ E+
kn
.

Since the class number of the imaginary cyclic field ke+1 is odd, so is the
narrow class number of kn. Therefore, a unit ϵ ∈ Ekn is totally positive if
and only if it is a square in kn ([2, Corollary 13.10]). Hence, Ekn ∩ N (F×

n )
coincides with E2

kn
, and

[Ekn : Ekn ∩N (F×
n )] = 22

n

.

The primes of F+
n = kn ramified in Fn are prime divisors over p, ℓ and 2 and

infinite prime divisors. The number tFn of all such primes equals

tFn = 1 + 1 + 2n + 2n or 1 + 1 + 2f + 2n

according as 0 ≤ n ≤ f−1 or f ≤ n ≤ e−1. Accordingly, we see from Lemma
3.2 that gn = 22

n+1 or 22
f+1. Now, we obtain the assertion as gn = 2r.

Lemma 5.1. (i) The case L0 = Q(
√
−2). The group 2An is generated by the

ideal class [Qh
n] over F2[Gn].

(ii) The case L0 = Q(
√
−2ℓ). The group 2An is generated by the ideal

classes [Ph
n] and [Qh

n] over F2[Gn].

Proof. We show the assertion for the case where L0 = Q(
√
−2ℓ) and

n = f . It is shown similarly for the other cases. We already know that
(Ph

f )
2 = phf and (Qh

f )
2 = qhf are principal ideals. Let Sf be the subgroup of
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2Af generated by the classes [Ph
f ] and [Qh

f ] over F2[Gf ]. By Proposition 1.1,

it suffices to show that the 2-rank of Sf equals 2f + 1. Assume that

(Ph
f )

s
∏
σ∈Gf

(Qσh
f )tσ = (α)

for some α ∈ F×
f with s, tσ = 0, 1. Then it follows that

(α2) = (phf )
s
∏
σ∈Gf

(qσhf )tσ = (a)

for some a ∈ k×
f because h = hke . We see that aϵ = α2 for some unit ϵ of

kf because the unit index of Ff is 1 ([2, Corollary 13.10]). Therefore, since
Ff = kf (

√
−2ℓdf ), aϵ or aϵ × (−2ℓdf ) is a square in kf . This implies that

the principal ideal (a) or (2aℓdf ) of kf is a square in the group of ideals kf .
For the first case, we see that s = tσ = 0 for all σ in Gf since h is odd.
The second case is impossible because l remains prime in kf . Thus, we have
shown that the 2-rank of Sf is 2f + 1.

Lemma 5.2. (i) The case L0 = Q(
√
−2). The extension M1

n/Fn is the class
field corresponding to An/A

2
n.

(ii) The case L0 = Q(
√
−2ℓ). The extension M2

n/Fn is the class field
corresponding to An/A

2
n, and the subextension M1

n/Fn is the maximal inter-
mediate field of M2

n/Fn in which the prime ideal Pn over p splits completely.

Proof. We show the assertion (ii) for L0 = Q(
√
−2ℓ). The assertion (i)

is shown similarly. We see from Lemma 4.2 that the 2-rank of the abelian
group Gal(M2

n/Fn) of exponent 2 equals 2n + 1 or 2f + 1 according as 0 ≤
n ≤ f − 1 or f ≤ n ≤ e − 1. Then, we observe from Proposition 1.1 that
for showing the first assertion of (ii), it suffices to show that the extension
M2

n/Fn is unramified. To show that it is unramified, it suffices to show that
the subextensions Fn(

√
ℓ∗)/Fn and Fn(

√
ωσ
n)/Fn (σ ∈ Gn) are unramified.

As Fn/Q is a Galois extension, Fn(
√
ωσ
n)/Fn is unramified if and only if so

is Fn(
√
ωn)/Fn. Since ℓ∗ ≡ 1 mod 8, Fn(

√
ℓ∗)/Fn is unramified outside ℓ by

Lemma 3.4. It is unramified also at ℓ since Fn/kn is ramified at ℓ. It follows
that Fn(

√
ωn)/Fn is unramified outside 2 even for the case ωn = ℓ∗ω. As

Fn = kn(
√
2∗ℓ∗dn), we have

Fn(
√
ωn) = Fn(

√
x) with x =

ωn

(2∗)h
× (ℓ∗dn)

−1.
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Therefore, by (4.1), (4.4) and Lemma 3.4, we see that Fn(
√
ωn)/Fn is un-

ramified also at 2. Thus, we obtain the first assertion of Lemma 5.2(ii).
The element ℓ∗ is a quadratic nonresidue modulo Pn by (1.1), while ωn is a
quadratic residue modulo Pn by Lemma 4.1. Therefore, the second assertion
of (ii) follows from the first one.

We denote by Mn = MFn the Hilbert 2-class field of Fn, so that we can
identify Gal(Mn/Fn) with the class group An. When L0 = Q(

√
−2ℓ), we

put
Bn = Gal(Mn/M

0
n) and Cn = ⟨[Ph

n]⟩.

We see that Bn is a Λ-submodule of An = Gal(Mn/Fn) because M
0
n is Galois

over Q. The group Cn is also a Λ-submodule of An because the ideal Pn is
invariant under the action of Γn = Gal(Fn/Q). It follows that

Cn
∼= Λ/(2, T ).

Proposition 5.1. (i) The case L0 = Q(
√
−2). The Λ-module An is cyclic.

(ii) The case L0 = Q(
√
−2ℓ). We have a decomposition An = Bn ⊕ Cn

of Λ-modules. The Λ-module Bn is cyclic, and dimF2 Bn/B
2
n = 2n or 2f

according as 0 ≤ n ≤ f − 1 or f ≤ n ≤ e− 1.

Proof. We show the assertion (ii). The assertion (i) is shown similarly.
By Lemma 5.2(ii), we see that Pn remains prime in the quadratic extension
M0

n/Fn. This implies that [Pn] ̸∈ Bn = Gal(Mn/M
0
n). It follows that

Bn ∩ Cn = {0}, and hence An = Bn ⊕ Cn. We observe that the quadratic
extensionM0

n/Fn does not satisfy the condition (ii) of Lemma 3.3 since [Ph
n] ∈

2An and Pn remains prime in M0
n/Fn. Hence, we obtain A2

n = B2
n by Lemma

3.3. From this and Lemma 5.2(ii), we see that the intermediate field of
Mn/M

0
n corresponding to B2

n coincides with M2
n = M0

nM
1
n. Therefore, we

obtain an isomorphism

Bn/B
2
n = Gal(M2

n/M
0
n)

∼= Gal(M1
n/Fn),

which is compatible with the action of Γn. The submodule Ṽn of F×
n /(F×

n )
2

is naturally regarded as a module over Rn = Z2[Γn], and hence as a module

over Λ. The module Ṽn is cyclic over Λ since Vn is cyclic over F2[Gn]. The
Kummer pairing

Gal(M1
n/Fn)× Ṽn → {±1}; (g, [v]) → ⟨g, v⟩ = (v1/2)g−1
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is nondegenerate and satisfies ⟨gγ, vγ⟩ = ⟨g, v⟩ for γ ∈ Γn. Therefore, we
obtain an isomorphism

Gal(M1
n/Fn) ∼= H = Hom(Ṽn, {±1}), (5.1)

which is compatible with the action of Γn. Here, γ ∈ Γn acts on f ∈ H by
the rule fγ([v]) = f([v]γ

−1
). Since the Λ-module Ṽn is cyclic, we see from

(5.1) that Gal(M1
n/Fn) is cyclic over Λ. Hence, so is Bn/B

2
n. It follows that

Bn is cyclic over Λ by Nakayama’s lemma. The assertion on the dimension
of Bn/B

2
n over F2 follows from Lemma 4.2 and (5.1).

Lemma 5.3. An unramified quadratic extension N/Fn extends to an unram-
ified cyclic quartic extension if and only if (a) the prime ideals Qσ

n (σ ∈ Gn)
of Fn over 2 split in N and (b) N ⊆ M1

n for the case L0 = Q(
√
−2ℓ).

Proof. We show the assertion only when L0 = Q(
√
−2ℓ). It is shown

similarly when L0 = Q(
√
−2). By Lemma 5.1, the group 2An is generated

by the classes [Ph
n] and [(Qσ

n)
h] with σ ∈ Gn. Then, because of Lemma 3.3

combined with Remark 3.1, we observe that N/Fn extends to an unramified
cyclic quartic extension if and only if the prime ideals Pn andQσ

n with σ ∈ Gn

split in N . On the other hand, by Lemma 5.2(ii), Pn splits in N if and only
if N ⊆ M1

n. Thus, we obtain the assertion.

Lemma 5.4. The quadratic extension Fn(
√
2∗)/Fn extends to an unramified

cyclic quartic extension if and only if 0 ≤ n ≤ f − 1.

Proof. We show the assertion when L0 = Q(
√
−2ℓ) using Lemma 5.3. It

is shown similarly when L0 = Q(
√
−2). We see that Fn(

√
2∗) ⊆ M1

n by (4.9),
and hence the condition (b) in Lemma 5.3 is satisfied. As Fn = kn(

√
2∗ℓ∗dn),

we have
Fn(

√
2∗) = Fn(

√
ℓ∗dn).

By Lemma 3.4 and the congruences (4.2), (4.3), we observe that the prime
ideals Qσ

n of Fn over 2 split in Fn(
√
2∗)/Fn if and only if 0 ≤ n ≤ f − 1.

Therefore, we obtain the assertion from Lemma 5.3.

Let Nn,4/Fn be the composite of all unramified quadratic extensions
N/Fn which extends to an unramified cyclic quartic extension. We see that
an unramified quadratic extension N/Fn extends to an unramified cyclic
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quartic extension if and only if N ⊆ Nn,4 and that Nn,4 is Galois over Q. We
have Ne,4 ⊆ M1

n by Lemma 5.3.. Let Vn,4 be the submodule of Vn such that

Nn,4 = Fn(
√
α
∣∣ [α] ∈ Vn,4),

and let
Rn,4 = ι(Vn,4) ⊆ R = F2[Gf ].

Here, ι is the fixed isomorphism from V = Vf to R = F2[Gf ] in (4.6). As
Nn,4 is Galois over Q, Rn,4 is an ideal of R.

Lemma 5.5. (i) When 0 ≤ n ≤ f − 1, the ideal Rn,4 coincides with Q ∩ Jn
and it is nontrivial. When f ≤ n ≤ e− 1, Rn,4 = {0}.

(ii) For each n, the ideal Rn,4 depends only on whether 2∗ = −2 or 2, and
not on individual L0’s.

Proof. By Lemma 5.4, Vn,4 contains the class [2
∗] if and only if 0 ≤ n ≤

f − 1. By (4.9), we have ι([2∗]) = Nf/0 ∈ R. Therefore, Rn,4 contains the
ideal J0 = (Nf/0) if and only if 0 ≤ n ≤ f − 1. On the other hand, J0 is
the smallest nontrivial ideal of R by Lemma 4.3. This implies that Rn,4 is
nontrivial if and only if 0 ≤ n ≤ f − 1. Let 0 ≤ n ≤ f − 1. Let [α] be a
nontrivial element of Vn, so that N = Fn(

√
α) is a quadratic subextension

of M1
n/Fn. Here,

α =
∏
σ∈Gf

(ωσ
f )

aσ with aσ = 0, 1,

and the elements aσ satisfy∑
σ∈Gf

aσσ ∈ Jn = (Nf/n).

By Lemma 5.3, N/Fn extends to an unramified cyclic quartic extension if
and only if the prime ideals Qσ

n of Fn over 2 split in N/Fn. For an element
x ∈ kn relatively prime to qσn = Qσ

n ∩ kn, we observe from Lemma 3.4 that
the following equivalence holds:

the ideal Qσ
n splits in Fn(

√
x)/Fn ⇐⇒ x ≡ 1 mod (qσn)

3.

This is because the prime ideal qn of kn is of degree one for 0 ≤ n ≤ f − 1
and ramifies in Fn. Now, we can write

N = Fn(
√
α) = Fn(

√
β) with β =

α

(2∗)h
× (ℓ∗dn)

−1.

21



As 0 ≤ n ≤ f − 1, ℓ∗dn ≡ 1 mod 8 by (4.2). Therefore, because of the above
equivalence, we see from (4.8) or the definition of the submodule Q of V that
the prime ideals Qσ

n with σ ∈ Gn split in N/Fn if and only if [α] ∈ Q ∩ Vn.
Then, it follows that Vn,4 = Q ∩ Vn, and hence Rn,4 = Q ∩ Jn by (4.7).
Thus, we obtain the first assertion (i). The assertion (ii) follows from (i) and
Lemma 4.4.

Lemma 5.6. If Q ∩ Jf−1 = Jf−1, then the 4-rank r4(An) equals 2n for any
0 ≤ n ≤ f − 1.

Proof. If Q ∩ Jf−1 = Jf−1, then we see from Lemma 5.5 that Rn,4 =
Q ∩ Jn = Jn for 0 ≤ n ≤ f − 1. It follows from (4.7) that Vn = Vn,4. This
implies that r4(An) equals dimF2 Vn = 2n by Lemma 4.2

Proof of Proposition 1.2. Proposition 1.2 follows from Lemma 5.5.

Proof of Theorem 1.1. We show the assertion when L0 = Q(
√
−2ℓ).

It is shown similarly when L0 = Q(
√
−2). By Proposition 5.1, the Λ-module

An is a product of the cyclic Λ-module Bn and Cn = Λ/(2, T ). By Propo-
sitions 1.1 and 1.2, Bn

∼= (Z/2)2f as abelian groups. This implies that the
cyclic Λ-module Bn is isomorphic to Λ/(2, T 2f ).

Proof of Theorem 1.2. We show the assertion when L0 = Q(
√
−2ℓ).

It is shown similarly when L0 = Q(
√
−2). By Proposition 5.1, the Λ-module

An is a product of the cyclic Λ-module Bn and Cn = Λ/(2, T ). The 2-rank of
Bn equals 2n by Proposition 1.1, and |Bn| ≥ 2n+1 by Proposition 1.2. This
implies that the cyclic Λ-module Bn satisfies the assumptions of Lemma 3.5.
Hence, we obtain the assertion from Lemma 3.5.

Proof of Theorem 1.4. Because of Lemma 5.5(ii) and the definition
of 2∗, the ideal Rn,4 = Q∩Jn depends only on n when the base field L0 moves
over Q(

√
−2) or Q(

√
−2ℓ) with ℓ ∈ P+. Therefore, we obtain the assertion

(i) of Theorem 1.4. We see that Q∩ Jf−1 is nontrivial by Lemma 5.5(i). By
Lemma 4.3(ii), this implies that Q ∩ Jf−1 ⊇ J0. If Q ∩ Jf−1 = Jf−1, then
r4(An) = 2n for any 0 ≤ n ≤ f − 1 by Lemma 5.6. Therefore, under the
assumption of Theorem 1.4(ii), we have J0 ⊆ Q ∩ Jf−1 ⊊ Jf−1. It follows
from Lemma 4.3 that there exists an integer m0 (1 ≤ m0 ≤ f − 1) such that

Jm0−1 ⊆ Q ∩ Jf−1 ⊊ Jm0 . (5.2)

22



Then, by Lemma 5.5, we see that Rn,4 = Jn for 0 ≤ n ≤ m0 − 1 and
Rn,4 = Q ∩ Jf−1 ⊊ Jn for m0 ≤ n ≤ f − 1. Therefore, we see from Lemma
4.3(ii) that r4(An) = 2n for 0 ≤ n ≤ m0 − 1, and that r4(An) < 2n for
m0 ≤ n ≤ f − 1. Hence, the integer m0 is nothing but the integer n+

p in
Theorem 1.4. Now, by Lemma 5.5(i), we obtain the assertion of Theorem
1.4(ii) on (sn, an, bn) and ord2(h̄n) with n+

p = m0 and b+p = dimF2 Q ∩ Jf−1.

Further, we obtain b+p ≥ 2n
+
p −1 from (5.2) and Lemma 4.3.

Proof of Theorem 1.5. Theorem 5 is shown similarly to Theorem 1.4
by using Lemma 5.5.

6 Proof of Theorem 1.6

We see in the following lemma that many of the assertions shown in Section
4 when L0 = Q(

√
−2) or Q(

√
−2ℓ) hold also when L0 = Q(

√
2) and κp = 0.

In the following, we let L0 = Q(
√
2), and assume that κp = 0. Recall that

Fn is imaginary only when n = e.

Lemma 6.1. Under the above assumption, the following assertions hold on
the imaginary cyclic field Fe.

(i) r2(Ae) = 2e and r4(Ae) ≥ 1.
(ii) The group 2Ae is generated by the ideal class [Qh

e ] over F2[Ge].
(iii) The extension Me/Fe is the class field corresponding to Ae/A

2
e.

(iv) The class group Ae is cyclic over Γe.

Proof. These assertions are shown in [5] except for the second assertion
(ii). We can show (ii) using r2(Ae) = 2e in a way similar to Lemma 5.1.

Proof of Theorem 1.6. As κp = 0, we have f̃ = e + 1 and f =
e. Similarly to Section 5, let Ne,4/Fe be the composite of all unramified
quadratic extensions over Fe which extends to an unramified cyclic quartic
extension. Let Ve,4 be the submodule of Ve such that

Ne,4 = Fe(
√
α
∣∣ [α] ∈ Ve,4),

and Re,4 = ι(Ve,4) ⊆ R = F2[Ge]. Here, ι is the isomorphism from V = Ve to
R = F2[Ge] in (4.6). We see that Ne,4 is Galois over Q, and hence Re,4 is an
ideal of R. By Lemmas 3.3 and 6.1(ii), we see that an unramified quadratic
extension N/Fe extends to an unramified cyclic quartic extension if and only
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if the ideals Qσ
e (σ ∈ Ge) of Fe split in N . Hence, we obtain Re,4 = Q from

Lemma 3.4 and (4.8) similarly to Lemma 5.5.
First, we assume that r4(Ae) < 2e−1 and show Theorem 1.6(i). By The-

orem 1.3 and (1.8), the assumption implies that se = 2 and be = dimF2 Q <
2e−1. For 1 ≤ n ≤ e−1, we observe from Lemma 4.3 that be = dimF2 Q < 2n

if and only if Q ⊊ Jn. Hence, by the definition of the integer n1, we have
Jn1−1 ⊆ Q ⊊ Jn1 . Therefore, we see that Q∩Jn = Jn for n ≤ n1−1 and that
Q∩ Jn = Q ⊊ Jn for n1 ≤ n ≤ e− 1. Because of Lemma 5.5, it follows from
this that n1 = n−

p and that be = dimF2 Q = b−p . Thus, we obtain Theorem
1.6(i).

Next, assume that r4(Ae) ≥ 2e−1 and show Theorem 1.6(ii). Since
Re,4 = Q, we see from the assumption that Q ⊇ Je−1 by Lemma 4.3. There-
fore, Q∩Jn = Jn for n ≤ e−1. Hence, we obtain Theorem 1.6(ii) by Lemma
5.5.

7 Proof of Theorem 1.7

As in the previous sections, we let p ≡ 1 mod 8 and we use the same notation.
For a number field N , let ÃN be the 2-part of the ideal class group of N in
the narrow sense. Clearly, ÃN coincides with the usual class group AN when
N is a CM field. When N is a quadratic field of discriminant d, we write
Ã(d) = ÃN and we let h+(d) be the narrow class number of N . It is well
known that the Ã(−8p) and Ã(8p) are cyclic by Gauss and that 4|h+(−8p)
and 4|h+(8p) by Rédei and Reichardt [13, 14]. Morton [11, Theorems 2, 3]
obtained the following theorem on 8-divisibility on these class numbers, which
is a key for proving Theorem 1.7. For some related results on 8-divisibility,
see also [7, 16].

Theorem 7.1 ([11]). We have 8|h+(−8p) if and only if p splits completely
in Q( 4

√
2). We have 8|h+(8p) if and only if p splits completely in Q(ζ16,

4
√
2).

Proof of Theorem 1.7. First, we prove Theorem 1.7(I). By Theo-
rem 1.4(i), it suffices to deal with the case where L0 = Q(

√
−2) and F0 =

Q(
√
−2p). We already know that L1 = F0(

√
−2) = Q(

√
−2,

√
p) is an un-

ramified extension over F0 and that L1/F0 extends to an unramified cyclic
quartic extension by Lemma 5.4. Let ω1 be the element of k1 = Q(

√
p) de-

fined in Section 4, which satisfies the congruence (4.4) with 2∗ = −2. Then,
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we observe that N = L1(
√
ω1)/L1 is an unramified quadratic extension be-

cause of qh1 = (ω1) and (4.4). Here, q1 is a prime ideal of k1 over 2 and h = hke

is the class number of ke. Further, we easily see that N/F0 is a cyclic quartic
extension using ω1ω

σ
1 = (−2)h where σ is the nontrivial automorphism of

k1/Q. On the other hand, we see that p splits completely in Q( 4
√
2) as we

are assuming f ≥ 2 in Theorems 1.4–1.7. Therefore, by virtue of Theorem
7.1, the unramified cyclic quartic extension N/F0 extends to an unramified
cyclic extension of degree 8. By Lemma 5.1(i), the class group 2A0 = 2AF0 is
generated by the class [Qh

0 ], where Q0 is the prime ideal of F0 over 2. Then,
we see that the last condition on N/F0 is equivalent to saying that the prime
ideal Q0 splits completely in N similarly to Lemma 3.3. Let q̃1 and q̃σ1 be the
prime ideals of L1 over q1 and qσ1 , so that we have Q0 = q̃1q̃

σ
1 in L1. Now, we

see that the condition on N/F0 is equivalent to saying that the prime ideals
q̃1 and q̃σ1 of L1 split in N = L1(

√
ω1). By Lemma 3.4, this is equivalent to

ω1

(−2)h
≡ 1 mod q31 and ω1 ≡ 1 mod (qσ1 )

3.

This congruence means that α = ω1 = Nf/1ωf satisfies the congruence (4.8),
which is equivalent to Q ⊇ V1, where Q is the submodule of V = Vf defined
just after (4.8). Therefore, we obtain Q ⊇ J1 and R1,4 = J1. This implies
that r4(A1) = dimF2 J1 = 2.

Next, let us show Theorem 1.7(II). We use the real quadratic field K =
Q(

√
2p) and the narrow class group ÃK = Ã(8p) in place of F0 = Q(

√
−2p)

and the usual class group A0 in the above argument. We see that E =
K(

√
2) = K(

√
p) is an unramified quadratic extension of K. Let ω1 be

the element defined in Section 4, which satisfies (4.4) with 2∗ = 2. Then,
we can show that E(

√
ω1)/K is a cyclic quartic extension unramified at

all finite primes. By Theorem 7.1, the extension E(
√
ω1)/K extends to a

cyclic extension of degree 8 unramified at all finite primes if and only if
p ≡ 1 mod 16. Let q be the unique prime ideal of K over 2, and let q̃1 and
q̃σ1 be the prime ideals of E over q1 and qσ1 . Then, we see that 2ÃK is a
cyclic group generated by the narrow ideal class [q] and that q = q̃1q̃

σ
1 in E.

Now, we can prove Theorem 1.7(II) similarly to Theorem 1.7(I) using the
quadratic extension E(

√
ω1)/E in place of L1(

√
ω1)/L1.
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8 Numerical data

In the previous sections, we were working with a fixed e and prime numbers
p of the form p = 2e+1q + 1. In this section, we deal with various e and
various primes p, and we put

ep = ord2(p− 1)− 1 and fp = min{ep − κp + 1, ep},

so that we have p = 2ep+1q + 1 with 2 ∤ q.
In Table 1 (resp. Table 2), we give the number of prime numbers p < 105

with (ep, κp) = (e, κ) (resp. fp = f). In view of Theorems 1.4 and 1.5, those
p with relatively large fp are of interest. By Table 2, there are 15 primes
p < 105 with fp ≥ 5. For these p, we compute the values ord2(h̄n) by using
2-adic analytic class number formula when L0 = Q(

√
−2) and Q(

√
−2ℓ) for

ℓ ∈ P with l < 1000, and we obtain Tables 3–5. Tables 3 and 4 are direct
data on the values ord2(h̄n) for prime numbers p = 65537 and 25601 with
(ep, κp, fp) = (15, 5, 11) and (9, 4, 6), respectively. In the tables, the data in
the row ℓ = ∗1 are those corresponding to the case L0 = Q(

√
−2). By virtue

of Theorem 1.2 and (1.8), we see from Table 4 that when p = 25601 and
L0 = Q(

√
−2),

A0
∼= Z/16, A1

∼= (Z/8)⊕2, A2
∼= (Z/4)⊕2 ⊕ (Z/8)⊕2,

A3
∼= (Z/4)⊕5 ⊕ (Z/8)⊕3,

An
∼=

{
(Z/2)⊕(2n−10) ⊕ (Z/4)⊕10 for 4 ≤ n ≤ 5
(Z/2)⊕64 for 6 ≤ n ≤ 8.

As we mentioned in Section 1, direct data on the values ord2(h̄n) and
resulting data on the abelian groups An such as above have led us to prove
Theorems 1.4–1.6. From Tables 3, 4 and the equivalence (1.9), we see that the
both prime numbers satisfy the assumptions of Theorems 1.4(ii) and 1.5(ii)
and obtain the value n±

p . We obtain the value b±p by Theorem 1.2 and (1.8).
For instance, (n+

p , b
+
p ) = (4, 10) for p = 25601. For the remaining 13 primes

p, we see from the corresponding data on ord2(h̄n) that the assumptions of
Theorems 1.4(ii) and 1.5(ii) are satisfied and obtain n±

p and b±p . Table 5 lists
the values n±

p and b±p for these 15 prime numbers.
In Table 5, the maximal value of n±

p is 4. We search for prime numbers p
with n±

p ≥ 5. We have n±
p = 5 if and only if r4(A4) ≥ 24 and 24 < r4(A5) < 25.

By (1.9), the last condition is equivalent to

ord2(h̄4) ≥ 32 and 32 < ord2(h̄5) < 64.
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For L0 = Q(
√
−2) and p < 109 with fp ≥ 5, we compute the order of A4

and obtain Table 6 on the number of such p with ord2(h̄4) = i (i ≥ 17).
There are 98813 such prime numbers. In the table, the number of such p
with ord2(h̄4) = 17 = 24 + 1 is zero! Here, see Theorem 1.7 once more.
Among 98813 prime numbers in the table, there are only six primes with
ord2(h̄4) ≥ 32. These primes are candidates of primes with n+

p ≥ 5. By
further computation on ord2(h̄5) for the six prime numbers, we obtain Table
7. The table contains the values of ord2(h̄5) also when L0 = Q(

√
−2ℓ) for

the first three prime numbers ℓ ∈ P+. We find three primes with n+
p = 5, the

ones with ord2(h̄5) = 48 and 49. In the table, those p with the mark − do not
satisfy the assumption of Theorem 1.4(ii). Hence, for these p, r4(An) = 2n

with 0 ≤ n ≤ fp − 1.
Table 8 gives some data related to Theorem 1.6 for the nine prime num-

bers p = p4,i in [5, Table 2]. Here, p4,i denotes the minimum prime number
p satisfying (ep, κp, ord2(h4)) = (4, 0, i) for L0 = Q(

√
2). For such p, we have

fp = e = 4. By Theorem 1.3 and (1.8), we see that the assumption of Theo-
rem 1.6(i) is satisfied if and only if 17 < i < 24. Among those p in Table 8,
there are six ones satisfying this condition. For these six ones, we list (n1, be)
in the table. In the table, those ones with the mark − do not satisfy the
assumption of Theorem 1.6(i), and hence they do not satisfy the assumption
of Theorem 1.5(ii) by Theorem 1.6(ii). The table also gives the basic data
ord2(h̄n) with 0 ≤ n ≤ fp − 1 = 3 when L0 = Q(

√
−2ℓ) for the first three

prime numbers ℓ ∈ P−. Then, we obtain the values n−
p and b−p in Theorem

1.5, and we can re-check the equality (n−
p , b

−
p ) = (n1, b4) in Theorem 1.6(i)

for the six ones.
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Table 1: The number of prime numbers with (ep, κp) = (e, κ).
HHHHHHe

κ
0 1 2 3 4 5 6 7 8 9 10 11 total

0 2399 2409 0 0 0 0 0 0 0 0 0 0 4808
1 0 0 2399 0 0 0 0 0 0 0 0 0 2399
2 308 287 601 0 0 0 0 0 0 0 0 0 1196
3 66 76 151 296 0 0 0 0 0 0 0 0 589
4 20 17 37 70 155 0 0 0 0 0 0 0 299
5 4 2 10 23 44 71 0 0 0 0 0 0 154
6 0 1 3 2 12 15 42 0 0 0 0 0 75
7 0 0 1 0 4 2 8 17 0 0 0 0 32
8 0 0 0 0 0 2 1 4 9 0 0 0 16
9 0 0 0 0 2 0 0 0 4 8 0 0 14
10 0 0 0 1 0 0 0 0 1 1 1 0 4
11 0 0 0 0 0 0 0 0 0 0 1 2 3
12 0 0 0 0 0 0 0 0 0 0 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0 0 0 1

total 2797 2792 3202 392 217 91 51 21 14 9 2 3 9591

Table 2: The number of prime numbers with fp = f .

f 0 1 2 3 4 5 6 7 8 9 10 11 total

7207 1202 894 218 55 9 4 0 1 0 0 1 9591
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Table 3: ord2(h̄n) for p = 65537 (fp = 11).
HHHHHl

n
0 1 2 3 4 5 6 7 8 9 10 11∼14

∗1 5 6 8 12 20 36 68 132 260 516 1028 2048
41 2 4 10 12 20 36 68 132 260 516 1028 2048
73 3 5 8 12 20 36 68 132 260 516 1028 2048
89 5 5 8 12 20 36 68 132 260 516 1028 2048
113 3 7 8 12 20 36 68 132 260 516 1028 2048
137 2 4 10 12 20 36 68 132 260 516 1028 2048
313 2 4 13 12 20 36 68 132 260 516 1028 2048
337 8 5 8 12 20 36 68 132 260 516 1028 2048
401 2 4 10 12 20 36 68 132 260 516 1028 2048
409 2 4 9 12 20 36 68 132 260 516 1028 2048
433 2 4 10 12 20 36 68 132 260 516 1028 2048
449 2 4 9 12 20 36 68 132 260 516 1028 2048
457 2 4 10 12 20 36 68 132 260 516 1028 2048
521 2 4 10 12 20 36 68 132 260 516 1028 2048
569 2 4 10 12 20 36 68 132 260 516 1028 2048
577 4 5 8 12 20 36 68 132 260 516 1028 2048
601 4 5 8 12 20 36 68 132 260 516 1028 2048
641 2 4 9 12 20 36 68 132 260 516 1028 2048
857 2 4 9 12 20 36 68 132 260 516 1028 2048
881 3 6 8 12 20 36 68 132 260 516 1028 2048
929 2 4 11 12 20 36 68 132 260 516 1028 2048

7 2 4 10 12 20 36 68 132 260 516 1028 2048
23 2 4 10 12 20 36 68 132 260 516 1028 2048
31 3 6 8 12 20 36 68 132 260 516 1028 2048
47 3 6 8 12 20 36 68 132 260 516 1028 2048
127 4 6 8 12 20 36 68 132 260 516 1028 2048
151 2 4 11 12 20 36 68 132 260 516 1028 2048
167 2 4 10 12 20 36 68 132 260 516 1028 2048
223 7 6 8 12 20 36 68 132 260 516 1028 2048
271 3 7 8 12 20 36 68 132 260 516 1028 2048
311 2 4 10 12 20 36 68 132 260 516 1028 2048
359 2 4 11 12 20 36 68 132 260 516 1028 2048
383 3 6 8 12 20 36 68 132 260 516 1028 2048
463 3 10 8 12 20 36 68 132 260 516 1028 2048
607 3 6 8 12 20 36 68 132 260 516 1028 2048
727 2 4 10 12 20 36 68 132 260 516 1028 2048
743 2 4 10 12 20 36 68 132 260 516 1028 2048
823 2 4 10 12 20 36 68 132 260 516 1028 2048
863 3 6 8 12 20 36 68 132 260 516 1028 2048
887 2 4 11 12 20 36 68 132 260 516 1028 2048
983 2 4 11 12 20 36 68 132 260 516 1028 2048
991 3 6 8 12 20 36 68 132 260 516 1028 2048
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Table 4: ord2(h̄n) for p = 25601 (fp = 6).
HHHHHHl

n
0 1 2 3 4 5 6∼8

HHHHHHl
n

0 1 2 3 4 5 6∼8

∗1 4 6 10 19 26 42 64 31 3 7 8 12 20 36 64
41 2 4 8 16 26 42 64 47 3 6 8 12 20 36 64
73 3 5 9 17 26 42 64 71 2 4 12 12 20 36 64
89 5 5 9 17 26 42 64 103 2 4 10 12 20 36 64
97 2 4 8 16 26 42 64 151 2 4 10 12 20 36 64
193 2 4 8 16 26 42 64 191 3 7 8 12 20 36 64
241 2 4 8 16 26 42 64 199 2 4 12 12 20 36 64
281 4 5 9 17 26 42 64 239 3 6 8 12 20 36 64
313 2 4 8 16 26 42 64 263 2 4 10 12 20 36 64
337 4 5 9 17 26 42 64 271 3 6 8 12 20 36 64
593 3 6 11 18 26 42 64 311 2 4 10 12 20 36 64
641 2 4 8 16 26 42 64 359 2 4 12 12 20 36 64
761 2 4 8 16 26 42 64 367 3 6 8 12 20 36 64
769 2 4 8 16 26 42 64 431 3 8 8 12 20 36 64
809 2 4 8 16 26 42 64 503 2 4 12 12 20 36 64
929 2 4 8 16 26 42 64 599 2 4 10 12 20 36 64
953 2 4 8 16 26 42 64 647 2 4 10 12 20 36 64
977 2 4 8 16 26 42 64 719 5 7 8 12 20 36 64

727 2 4 10 12 20 36 64
743 2 4 15 12 20 36 64
751 3 6 8 12 20 36 64
823 2 4 10 12 20 36 64
863 3 6 8 12 20 36 64
919 2 4 10 12 20 36 64
967 2 4 15 12 20 36 64
991 3 6 8 12 20 36 64
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Table 5: (n±
p , b

±
p ) with fp ≥ 5.

fp p ep κp (n+
p , b

+
p ) (n−

p , b
−
p )

11 65537 15 5 (3,4) (3,4)
8 59393 10 3 (2,2) (2,3)
6 6529 6 1 (3,5) (3,4)
6 25601 9 4 (4,10) (3,4)
6 50177 9 4 (2,2) (2,2)
6 96001 7 2 (2,2) (2,3)
5 15809 5 0 (2,3) (2,2)
5 21569 5 1 (2,3) (2,2)
5 35201 6 2 (3,5) (2,2)
5 45697 6 2 (3,6) (2,2)
5 50753 5 1 (3,6) (4,10)
5 53633 6 2 (2,2) (2,2)
5 83777 5 0 (2,3) (3,5)
5 92737 5 0 (3,4) (3,6)
5 93377 5 0 (2,2) (2,2)

Table 6: The number of primes with the ord2(h̄4) = i (p < 109, fp ≥ 5).
i 17 18 19 20 21 22 23 24 25 26

0 48078 25053 12771 6409 3281 1576 822 384 212

i 27 28 29 30 31 32 33 34 ≥ 35
120 56 24 13 8 2 2 2 0
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Table 7: ord2(h̄n) for six primes with the ord2(h̄4) ≥ 32.
p ep κp (n+

p , b
+
p )

HHHHHHl
n

0 1 2 3 4 5

676199297 6 1 (5,16)
∗1 4 6 10 18 32 48
73 4 6 10 18 32 48
113 4 5 9 17 32 48
137 2 4 8 16 33 48

816873089 6 2 −
∗1 4 6 10 18 32 32
17 2 4 8 16 35 32
89 8 5 9 17 32 32
97 2 4 8 16 33 32

574717313 6 1 (5,17)
∗1 4 6 10 18 33 49
73 8 7 12 20 33 49
193 2 4 8 16 32 49
233 4 5 9 17 37 49

640935553 6 0 (5,17)
∗1 5 10 12 20 33 49
17 2 4 8 16 32 49
41 2 4 8 16 32 49
89 3 6 18 20 33 49

156731329 5 0 −
∗1 7 8 12 20 34
41 2 4 8 16 32
89 4 5 9 17 33
97 2 4 8 16 32

579604033 5 0 −
∗1 4 6 10 18 34
41 2 4 8 16 32
73 4 8 14 22 35
89 3 9 10 18 34
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Table 8: ord2(h̄n) for p4,i.

p4,i ep κp (n1, be) i p4,i ep κp (n1, be) i
HHHHHHl

n
0 1 2 3

HHHHHHl
n

0 1 2 3

2593 4 0 (2,2) 18 598817 4 0 (3,7) 23

7 2 6 6 10 31 3 6 11 15
23 2 6 6 10 103 2 4 8 15
127 4 4 6 10 127 5 6 10 15

26849 4 0 (2,3) 19 31649 4 0 − 24

31 5 8 7 11 31 3 6 12 16
71 2 4 7 11 167 2 4 8 17
79 4 6 7 11 223 10 9 12 16

10657 4 0 (3,4) 20 476513 4 0 − 25

7 2 4 12 12 23 2 4 8 16
31 3 8 8 12 31 3 9 10 17
47 3 6 8 12 103 2 4 8 16

68449 4 0 (3,5) 21 572321 4 0 − 26

7 2 4 8 13 31 3 7 10 19
79 3 8 9 13 71 2 4 8 16
103 2 4 8 13 103 2 4 8 16

138977 4 0 (3,6) 22

7 2 4 8 14
23 2 4 8 14
47 3 8 14 14
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