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Abstract

In order to discuss the validity of the Kummer-Vandiver conjec-
ture, we consider a generalized problem associated to the conjec-
ture. Let p be an odd prime number and ζp a primitive p-th root of
unity. Using new programs, we compute the Iwasawa invariants of
Q(

√
d, ζp) in the range |d| < 200 and 200 < p < 1, 000, 000. From

our data, the actual numbers of exceptional cases seem to be near
the expected numbers for p < 1, 000, 000. Moreover, we find a few
rare exceptional cases for |d| < 10 and p > 1, 000, 000. We give two
partial reasons why it is difficult to find exceptional cases for d = 1
including counter-examples to the Kummer-Vandiver conjecture.
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1 Introduction

Let p be an odd prime number and K a finite extension of Q. K∞ denotes the
cyclotomic Zp-extension of K. Let Kn be its n-th layer and An = An(K) the
p-part of the ideal class group of Kn.
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First, let K be the p-cyclotomic field Q(ζp), then Kn = Q(ζpn+1). Let
ω = ωp be the Teichmüller character Z/pZ → Zp such that ω(a) ≡ a mod p.
We identify ∆ = Gal(K∞/Q∞) with (Z/pZ)×. Put eωk = 1

♯∆

∑
δ∈∆ ω

k(δ)δ−1

the idempotent of the group ring Qp[∆]. Then we have

An =
⊕
k:even

eωkAn ⊕
⊕

p−k:odd

eωp−kAn,

where k is an even integer with 2 ≤ k ≤ p− 1. Let A+
n (resp. A−

n ) be the even
part (resp. odd part). Let rp be the irregularity index, i.e., the number of irreg-
ular pairs (p, k). Irregular pairs have been computed by Kummer, Vandiver,
D.H. Lehmer, E. Lehmer, Selfridge, Nicol, Pollack, Johnson, Wada, Wagstaff,
Tanner, Ernvall, Metsänkylä, Buhler, Crandall, Sompolski, Shokrollahi, Hart,
Harvey and Ong. These computations had been connected with verification
of Fermat’s last theorem. However, even after the proof was completed by
Wiles, they are still interesting because they give us concrete knowledge of the
ideal class group of cyclotomic fields. In [1, 2, 5] etc., for any prime number
p < 231 = 2, 147, 483, 648, it has been verified that

A+
n = {0} and A−

n ≃ (Z/pn+1Z)rp for all n ≥ 0.

The former statement is called the Kummer-Vandiver conjecture. We have
a naive explanation of the fact that we have not been able to find any counter-
example. If we follow the heuristic argument of [15, pp.158–159], we can
expect that the number of exceptions to the Kummer-Vandiver conjecture for
x0 ≤ p ≤ x1 is approximately (log log x1 − log log x0)/2. Then, (log log 231 −
log log 37)/2 = 0.891756 · · · is probably too small to find one counter-example,
where 37 is the smallest irregular prime number. Furthermore, the expected
number would not be exact, because there are some effects on ideal class groups
from an upper bound for the numerator of the Bernoulli number or the K-
groups (cf. [10]). If there are another strong effects, the actual number could be
much less than the above number. In order to study the heuristic, we consider
the following generalized problem.

Problem 1.1 Let F be an abelian extension of Q. Let NF (x) be the number
of prime numbers p such that A0(F (ζp)

+) ̸= {0} for p ≤ x, where F (ζp)
+ is

the maximal real subfield of F (ζp). Is NF (x) bounded as x → ∞? If it is not
so, give an approximate function for NF (x).

The Kummer-Vandiver conjecture claims that NQ(x) = 0 for all x, which is
much stronger than its boundedness.

In this paper, following [11, 12, 13, 14], we study the above problem when
F is Q or a quadratic field, because they are easy to be compared. Let χ be the
Dirichlet character associated to F and fχ its conductor. The main purpose
of the paper is to find exceptional cases associated to the χωk-part in order to
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argue about the expected number. We actually computed the Iwasawa invari-
ants of Q(

√
d, ζp) in the range |d| < 200 and 200 < p < 1, 000, 000 by using

new programs, where d = dχ = χ(−1)fχ. From our data, the actual number
seems to be near the expected number in the range. Moreover, we found a few
rare exceptional cases for |d| < 10 and 1, 000, 000 < p < 20, 000, 000.

Our computations are executed in O((fχp)
1+ϵ) bit operations. See [12, 14]

on the relation between these Iwasawa invariants and the higher K-groups of
the integer ring of Q(

√
d).

2 Iwasawa invariants of Q(
√
d, ζp)

Let χ be the trivial character or a quadratic Dirichlet character conductor
f = fχ and p an odd prime number such that p does not divide f . Put
d = dχ = χ(−1)fχ, K = Q(

√
dχ, ζp), then Kn = Q(

√
dχ, ζpn+1). Let An be

the p-part of the ideal class group of Kn.
Put Γ = Gal(K∞/K), ∆ = Gal(K∞/Q∞) and eψ = 1

♯∆

∑
δ∈∆ ψ(δ)δ

−1 for
a character ψ of ∆. We put f0 = fp and identify ∆ with a subquotient of
(Z/f0Z)

× in the ordinary way. For a Zp[∆]-module A, Aψ denotes eψA. Let
λp(ψ), µp(ψ) and νp(ψ) be the Iwasawa invariants associated to Aψn , i.e.,

♯Aψn = pλp(ψ)n+µp(ψ)p
n+νp(ψ)

for sufficiently large n. By Ferrero-Washington’s theorem, we have µp(ψ) = 0
for all p and ψ.

Assume that ψ is even. The Iwasawa polynomial gψ(T ) ∈ Zp[T ] for the
p-adic L-function is defined as follows. Let Lp(s, ψ) be the p-adic L-function
constructed by [8]. By [7, §6], there uniquely exists Gψ(T ) ∈ Zp[[T ]] satisfying
Gψ((1+f0)

1−s−1) = Lp(s, ψ) for all s ∈ Zp if ψ ̸= χ0. By [3], p does not divide
Gψ(T ). By the p-adic Weierstrass preparation theorem, we can uniquely write
Gψ(T ) = gψ(T )uψ(T ), where gψ(T ) is a distinguished polynomial of Zp[T ] and
uψ(T ) is an invertible element of Zp[[T ]]. Similarly we can define g∗ψ(T ) ∈ Zp[T ]
from G∗

ψ(T ) ∈ Zp[[T ]] satisfying G
∗
ψ((1 + f0)

s − 1) = Lp(s, ψ). Put

λ̃p(ψ) = deg gψ(T ) = deg g∗ψ(T ).

Put fn = f0p
n and let γ ∈ Γ ≃ Gal(∪n≥0Q(ζfn)/Q(ζf0)) be the generator

of Γ such that ζ γ̃fn = ζ1+f0fn
for all n ≥ 0. As usual, we can identify the

complete group ring Zp[[Γ]] with the formal power series ring Λ = Zp[[T ]] by
γ = 1 + T . By this identification, we can consider a Zp[[Γ]]-module as a Λ-
module. For a finitely generated torsion Λ-module A, we define the Iwasawa
polynomial charΛ(A) to be the characteristic polynomial of the action T on
A ⊗ Qp (cf. [15, §13]). Let Ln be the maximal unramified abelian extension
of Kn and Mn the maximal abelian extension of Kn unramified outside p. By
the class field theory, we have An ≃ Gal(Ln/Kn). Set L∞ = ∪n≥0Ln, M∞ =
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∪n≥0Mn, X∞ = Gal(L∞/K∞) and Y∞ = Gal(M∞/K∞). By the Iwasawa main
conjecture proved by [4, 9], charΛ(X

ψ−1ω
∞ ) = g∗ψ(T ) and charΛ(Y

ψ
∞) = gψ(T ).

In the following, we assume that

ψ = χωk is even, and ψ∗ = ψ−1ω = χωp−k is odd

with 2 ≤ k ≤ p− 2. Since p does not divide f ,

(C) ψ(p) ̸= 1 and ψ∗(p) ̸= 1.

By (C), we have that Aψn ≃ Xψ
∞/ωnX

ψ
∞ and Aψ

∗
n ≃ Xψ∗

∞ /ωnX
ψ∗
∞ , where ωn =

(1+T )p
n−1 (cf. [6, Lemma 3 and Remark 4]). Moreover, if Aψ0 is trivial, we have

λ(ψ) = ν(ψ) = 0, Xψ
∞ = {0}, Y ψ

∞ ≃ Λ/(gψ(T )) and Xψ∗
∞ ≃ Λ/(g∗ψ(T )).

Put a0 = a0(ψ) = Lp(1, ψ) = Gψ(0) and b0 = b0(ψ) = Lp(0, ψ) = G∗
ψ(0).

We call (p, χωk) exceptional pairs when one of the following conditions
holds: [ν] : ν(χωk) > 0, [a0] : vp(a0) > 1, [b0] : vp(b0) > 1 or [lmd] : λ̃(χωk) > 1.
In [11, 12, 13, 14], we computed exceptional pairs for |d| < 200 and p <
200, 000. By further computation, we obtain the following.

Proposition 2.1 For |d| < 200 and 200, 000 < p < 1, 000, 000, all exceptional
pairs (p, χωk) are given in Table 1.

Table 1: Exceptional pairs for |d| < 200 and 200, 000 < p < 1, 000, 000.
[ν] [a0]

p k d p k d
240571 146919 -43 241817 134764 53
289897 186889 -131 290627 50599 -151
384487 13724 161 292801 242013 -104
384847 226771 -143 333581 180787 -71
386119 263582 149 399181 1683 -4
401321 205162 185 788687 186548 141
937943 11057 -167

[ν] [a0]
p k d p k d

292157 48631 -111 245177 59489 -20
434389 402352 93 312089 21817 -159
512891 91273 -120 372871 329947 -104
516323 63368 136 429427 61972 92
541759 285435 -71 483773 271222 33
570781 405689 -52 509581 402749 -195
785303 359267 -67 667727 487990 113
800447 136068 161 768013 754145 -111

794141 494244 165
911831 821980 165

4



In order to study Problem 1.1 efficiently, we consider the following problem.

Problem 2.1 Let X be a set of primitive Dirichlet characters. Let N
[ν]
X,x0

(x)

be the number of pairs (p, χωk) such that ν(χωk) > 0 for χ ∈ X in the range

x0 ≤ p ≤ x. We similarly define N
[a0]
X,x0

(x), N
[b0]
X,x0

(x) and N
[lmd]
X,x0

(x). Are they
bounded as x→ ∞? If they are not so, give approximate functions for them.

In Figure 1, we compare actual numbers of exceptional pairs in the range

fχ < 200 and 200 < p ≤ x with the expected number E(x) = 123
∑

200<p≤x

p− 3

2

(
1

p

)2

,

where 123 is the number of the trivial or quadratic characters χ with fχ < 200.
From our data, actual numbers still seem to be near the expected number.

Figure 1: Actual numbers and the expected number (200 < p < 1, 000, 000).
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For |d| < 10, we obtain the following by further computation.

Proposition 2.2 For |d| < 10 and 10 < p < 20, 000, 000, all exceptional pairs
(p, χωk) are given in Table 2.

Table 2: Exceptional pairs for |d| < 10 and 10 < p < 20, 000, 000.
[ν] [a0]

p k d p k d
379 317 -4 59 36 8
34301 114 8 1381 609 -4
157229 140434 8 399181 1683 -4

5911877 1629992 5
[b0] [lmd]

p k d p k d
173 97 -7 23 11 -8
257 101 -3 1151 842 8
2221 1600 8 3613 1147 -7

4953979 1174520 5 27791 11840 8
1744817 928867 -3

Remark 2.1 In [14, Proposition 2], we reported that there is only one ex-
ceptional pair (399181, χ−4ω

1683) in the range |d| < 10 and 200, 000 < p <
1, 000, 000, which is included in [lmd] by mistake.

3 A conjecture on the number of exceptional pairs

We give two partial reasons why it is difficult to find exceptional pairs for
χ = χ0, i.e., d = 1. The first partial reason is the fact that the expected number
for χ0 is smaller than those for the other characters. Let rp,χ be the number
of pairs (p, χωk) such that λ̃p(χω

k) > 0. Then we have 0 ≤ rp,χ ≤ (p − 3)/2.
The distribution of the number of p such that rp,χ = r for each χ in the range
200 < p < 20, 000, 000 is similar to that for χ0. However, the distribution for
χ in the range 10 < p < 200 is not always similar to that for χ0, which affects

expected numbers. For each χ, put Eχ(x) =
∑

10<p≤x, p:prime

rp,χ
p

. The following

table and figures show differences among Eχ(x)s.

Table 3: Expected numbers of exceptional pairs up to x = 10n.
x\d 1 5 8 -3 -4 -7 -8
102 0.06880 0.19020 0.28139 0.12712 0.19738 0.17111 0.15889
103 0.24468 0.37505 0.42811 0.25481 0.33259 0.38703 0.33137
104 0.38967 0.51498 0.56373 0.39079 0.47707 0.52158 0.47146
105 0.49996 0.62089 0.67539 0.50485 0.58772 0.63171 0.58758
106 0.59054 0.71359 0.76666 0.59531 0.67887 0.72346 0.67885
107 0.66785 0.79089 0.84353 0.67206 0.75614 0.80081 0.75607
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Figure 2: Expected numbers of exceptional pairs up to 10, 000.

Figure 3: Expected numbers of exceptional pairs up to 20, 000, 000.
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In Figures 2 and 3, we compare Eχ(x)s with E ′(x) =
∑

37≤p≤x

p− 3

2p2
and

E ′′(x) =
∑

37≤p≤x

p− 17

2p2
, where E ′′(x) is defined by considering trivialities of

K4(Z) and numerators of Bernoulli numbers B2i for i =1–5 and 7 (see [11,
§4.2]).

Table 4 shows the total number Nd of exceptional pairs in 200 < p <
1, 000, 000 for each d, the distribution (%) and a Poisson distribution with

λ = 4
∑

200<p<1,000,000

p− 3

2p2
= 1.8721 · · · . Since there are 23 d’s with Nd = 0

among 123 d’s, it is not very unusual that N1 = 0. This is the second partial
reason.

Table 4: The total number of exceptional pairs for d in 200 < p < 1, 000, 000.
Nd ♯ % Poisson d
0 23 18.699 15.380 1,5,-11,13,-15,24,-24,-35,-40,-56,-68,69,-87,-95,

-103,-107,-123,129,-132,-148,-164,173,-191
1 35 28.455 28.793 -3,-7,12,17,-23,29,-31,-55,-59,65,73,77,-83,85,88,

89,92,93,101,104,-119,120,137,-143,145,-155,168,
172,-179,-187,188,-195,197,-199

2 30 24.390 26.952 -8,-20,21,33,37,40,41,-43,44,-47,57,60,61,76,-84,
-88,109,-184,-111,113,-115,136,140,152,-159,-163,
177,-183,184,185,193

3 16 13.008 16.819 -4,28,-51,-52,56,97,105,-127,133,-136,-151,-152,
157,-167,-168,181

4 11 8.9431 7.8716 -39,53,-67,-91,-116,-120,-139,141,156,161,165
5 4 3.2520 2.9472 8,-71,-104,124
6 3 2.4390 0.9196 -19,-79,149
7 1 0.8130 0.2459 -131

From our data and computational results on p-adic L-functions, it is natural
to consider the following conjecture.

Conjecture 3.1 Let X be a set of primitive Dirichlet characters. For χ ∈ X,
let nχ be the order of χ, Op,χ the integer ring of Qp(ζnχ), and mp,χ the maximal
ideal of Op,χ. For a sufficiently large number x0, an approximate function of

N
[ν]
X,x0

(x), N
[a0]
X,x0

(x), N
[b0]
X,x0

(x) and N
[lmd]
X,x0

(x) is given by the sum of∑
x0≤p≤x

p− 3

2

(
1

♯(Op,χ/mp,χ)

)2

=
∑

x0≤p≤x
p≡1modnχ

p− 3

2

(
1

p

)2

+
∑

x0≤p≤x
p ̸≡1modnχ

p− 3

2

(
1

pfp,χ

)2

≈ 1

φ(nχ)

∑
x0≤p≤x

p− 3

2p2
+O(1)

≈ (log log x− log log x0)/(2φ(nχ)),
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over χ ∈ X, where pfp,χ = ♯(Op,χ/mp,χ) ≥ p2.

Remark 3.1 By replacing Zp byOp,χ, we can defineN
[ν]
X,x0

(x), . . . andN
[lmd]
X,x0

(x).
If χ is not the trivial character nor a quadratic character, then φ(nχ) ≥ 2 and

the expected number is clearly smaller than
∑

x0≤p≤x

p− 3

2p2
. This is a reason why

we first study characters with nχ ≤ 2.

4 Computations of arithmetic elements

In order to study Iwasawa invariants, we compute the following arithmetic
elements (see [12, §5]):
(I) the generalized Bernoulli numbers modulo p, i.e.,

∑p−3
k=0Bk,χt

k/k! mod p,
(II)n the Iwasawa polynomial gχωk(T ) mod pn+1,

(III)n the special cyclotomic unit (cχω
k

n )Yn(T ) modulo a prime ideal Ln,
(IV)n the Gauss sum g0(NKn/K0Ln)

χωp−k
modulo a prime ideal L∗

0, where Ln
(resp. L∗

n) is a prime ideal above l = 1 + kfn (resp. l∗ = 1 + k∗(2fnl)) of Kn.

From 2002 to 2007, we used 32-bit programs (bcn.c for even χ’s and bcm.c
for odd ones) for computations of (I), (II)1 and (III)0 in [11, 12, 13, 14].
These programs work when f0 and 8(p − 3) log16(2p

3) are smaller than 231.
Therefore, for f = 1 (resp. 199), they do not work when p > 15, 000, 000
(resp. 11,000,000). Since 2015, inspired by [2], we have been used 64-bit pro-
grams (bcn64.c and bcm64.c), which work when p is smaller than 162 million.
Further, the program is available to check Greenberg’s conjecture by comput-
ing (III)1. However, since it needs O(f 1+ϵ

1 ) bit operations, we did not check it
for p > 100, 000 except for (p, k, d) = (157229, 140434, 8).

Computation of (IV)0 rigorously proves that the cyclotomic unit cχω
k

0 is a
p-th power element in K0, i.e., νp(χω

k) > 0. From 2002 to 2007, we used 32-bit
programs (gauss.c for small f0’s and gaussd.c for large ones) for computation of
(IV)0, which work when 2l is smaller that 231. Therefore, for f = 1 (resp. 199),
they do not work when p > 110, 000, 000/k (resp. 550, 000/k) with k =2–24.
In order to reduce memory usage, we use HDD and several auxiliary primes
li ≈ 1000 in gaussd.c, which slows down the computation. Since 2020, we have
been used 64-bit programs (gauss64.c and gaussd64.c), which work when 2l
and 8f0 log16(2l

∗2f0) are smaller than 263. In order to reduce memory usage,
we use HDD and several auxiliary primes li ≈ 100000 in gaussd64.c.

Computations of (I), (II)1, (III)0 and (IV)0 are executed in O(f 1+ϵ
0 ) bit

operations. In Table 5, we give the ratios of execution times for (I)–(IV) by a
single thread program on a Linux PC, where ∗ means that we did not compute
it for lack of RAM.
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Table 5: The ratios of execution times.
p 157229 937943 999983 999983 19999873 19999999
d 8 -167 1 -199 1 -7
(I) 1 41 5.4 47 280 320
(II)1 0.5 190 1.3 240 48 300
(III)0 0.4 74 1.1 94 38 83
(IV)0 10 ∗ - - - -
(IV)0d 44 9000 - - - -

For computations of (I) and (IV)0, we need large RAM for the FFT al-
gorithm. Various methods in [5] will be useful for speed-up and reduction of
memory usage in computations of (I), (II)1 and (III)0 . It will be able to speed
up computations of (II)1 and (III)0 by parallel computing with GPU.

The above programs and further data have been available in our web page:
https://math0.pm.tokushima-u.ac.jp/˜hiroki/major/galois1-e.html. These data
were obtained by six personal computers for several years. Though we com-
puted twice for |d| < 200 and p < 1, 000, 000, we computed only once for
|d| < 10 and p < 20, 000, 000. Hence, we deduce that there must be some
errors and that some irregular pairs are missing in the latter computation.
However, considering their ratio, we deduce that these possible errors do not
affect Proposition 2.2.
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