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Abstract

Let e ≥ 2 be a fixed integer, and let p = 2e+1q + 1 be an odd
prime number with 2 ∤ q. For 0 ≤ n ≤ e, let kn be the subfield

of the pth cyclotomic field Q(ζp) of degree 2n. For L0 = Q(
√
2)

or Q(
√
2ℓ) with an odd prime number ℓ, we put Ln = L0kn. For

each 0 ≤ n ≤ e − 1, we denote by Fn the quadratic subextension
of the (2, 2)-extension Ln+1/kn with Fn ̸= Ln, kn+1. It is a real
cyclic field of degree 2n+1. We study the Galois module structure
of the 2-parts of the narrow and the ordinary class groups of Fn.
This generalizes a classical result of Rédei and Reichardt for the
case n = 0.
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1 Introduction

Let e ≥ 2 be a fixed integer, and let p = 2e+1q + 1 be an odd prime number
with 2 ∤ q. For each 0 ≤ n ≤ e + 1, we denote by kn the subfield of the pth
cyclotomic field Q(ζp) of degree 2n. We denote by P the set of prime numbers
ℓ satisfying (p

ℓ

)
= −1 and ℓ ≡ ±1 mod 8. (1.1)

Let L0 = Q(
√
±2) or Q(

√
±2ℓ) with ℓ ∈ P, and put Ln = L0kn. For each

0 ≤ n ≤ e, Ln+1/kn is a (2, 2)-extension with quadratic subextensions kn+1 and
Ln. We denote by Fn the third quadratic subextension of the (2, 2)-extension
Ln+1/kn. It is a cyclic extension over Q of degree 2n+1. The cyclic field Fn is
real when L0 is real and 0 ≤ n ≤ e−1 or when L0 is imaginary and n = e. It is
imaginary otherwise. When n = 0, Rédei and Reichardt [11] studied the 2-part
of the class group of the quadratic field F0 = Q(

√
±2p) or Q(

√
±2pℓ). In the

previous papers [5, 6], we studied the Galois module structure of the 2-part of
the class group of Fn when Fn is imaginary, and generalized the classical result
on F0. In this paper, we study the class group of Fn when Fn is real. To avoid
confusion, we only deal with the case where L0 is real and 0 ≤ n ≤ e− 1.

In all what follows, we let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P. Let C̃lF

and ClF be the ideal class groups of a number field F in the narrow sense
and in the ordinary sense, respectively, and let ÃF and AF be the 2-parts of
C̃lF and ClF , respectively. We put h̃n = |C̃lFn

|, hn = |ClFn
|, Ãn = ÃFn

and
An = AFn

. Let P+ (resp. P−) be the subset of P consisting of those ℓ ∈ P with
ℓ ≡ 1 mod 8 (resp. ℓ ≡ −1 mod 8), so that we have P = P+ ⊔ P−. It is well
known that

Ã0
∼=


Z/2j when L0 = Q(

√
2),

Z/2⊕ Z/2j when L0 = Q(
√
2ℓ) with ℓ ∈ P+,

Z/2⊕ Z/2 when L0 = Q(
√
2ℓ) with ℓ ∈ P−,

for some j ≥ 2 depending on L0. This is due to Rédei and Reichardt [11]. There
are many other papers and results on the 2-part of class groups of quadratic
fields, such as [1, 3, 7, 8, 10, 14, 15]. We generalize the above classical result
for n ≥ 1. We fix a generator γn of the cyclic group Γn = Gal(Fn/Q) of order
2n+1. Let Rn = Z2[Γn] be the group ring associated to Γn over the ring Z2

of 2-adic integers. Let Λ = Z2[[T ]] be the 2-adic power series ring with an
indeterminate T . We identify the group ring Rn = Z2[Γn] with the residue

ring Λ/((1 + T )2
n+1 − 1) by the correspondence γn ↔ 1 + T :

Rn = Λ/((1 + T )2
n+1

− 1). (1.2)

The class groups Ãn and An are naturally regarded as modules over Rn, and
hence as modules over Λ. In this paper, we study the structure of these Λ-
modules when 0 ≤ n ≤ e − 1. As in [5, 6], our arguments are based upon the
following fact.
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Lemma 1.1. Under the above setting, (1+T )2
n

+1 annihilates the Λ-modules
Ãn and An.

Let κp be the smallest non-negative integer κ such that p splits completely

in Q(21/2
e−κ+1

). It is known that 0 ≤ κp ≤ e and that for each i with 0 ≤ i ≤ e,
there exist infinitely many prime numbers p of the form p = 2e+1q + 1 with
κp = i ([5, Lemma 1]). We put

f̃ = e− κp + 1 and f = min{e, f̃}.

We have 1 ≤ f ≤ e as κp ≤ e. We have f = f̃ when κp ≥ 1, and f = f̃ ≤ e− 1
if and only if κp ≥ 2. In the following, we simply write “f ≤ n ≤ e − 1”
when κp ≥ 2 and f ≤ n ≤ e − 1. It is also known that the prime number 2
splits completely in kf̃ and that the primes over 2 remain prime in ke+1/kf̃ ([5,
Lemma 3]). For a finite abelian group A and an integer t ≥ 1, let

r2t(A) = dimF2(2
t−1A/2tA)

be the 2t-rank of A, where F2 is the field of 2 elements. On the 2-rank of the
narrow class group Ãn, the following assertion holds.

Proposition 1.1. According as L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P, the 2-rank

r2(Ãn) equals 2n or 1 + 2n for 0 ≤ n ≤ f − 1, and it equals 2f or 1 + 2f for
f ≤ n ≤ e− 1.

Remark 1.1. As the ordinary class group An is a quotient of the narrow one
Ãn, we have r2t(An) ≤ r2t(Ãn) for every n and L0.

Proposition 1.2. (I) Let L0 = Q(
√
2). The Λ-modules Ãn and its quotient

An are cyclic.
(II) The case L0 = Q(

√
2ℓ) with ℓ ∈ P. The Λ-module Ãn is isomorphic

to Λ/(2, T ) ⊕ B̃n for some cyclic Λ-module B̃n. Further, when ℓ ∈ P+, An is
isomorphic to Λ/(2, T )⊕Bn for some cyclic Λ-module Bn, which is a quotient
of the Λ-module B̃n.

Let A be a finite cyclic Λ-module which is annihilated by (1 + T )2
n

+ 1.
Then, we see that r2(A) ≤ 2n since the quotient Λ/((1+T )2

n

+1) is isomorphic
to Z⊕2n

2 as an abelian group. When r2(A) = 2n (and hence ord2(|A|) ≥ 2n),
we put

sn(A) =

⌈
ord2(|A|)

2n

⌉
,

and
an(A) = 2nsn(A)− ord2(|A|), bn(A) = 2n − an(A).

Here, ⌈x⌉ denotes the smallest integer ≥ x, and ord2(∗) the 2-adic additive
valuation on Q with ord2(2) = 1. Then, we have sn(A) ≥ 1, an(A) ≥ 0 and
bn(A) ≥ 1. Further, we define an ideal Θn(A) of Λ by

Θn(A) =
(
2sn(A), 2sn(A)−1T bn(A), (1 + T )2

n

+ 1
)
.
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Note that the integers sn(A), an(A), bn(A) and the ideal Θn(A) depend only
on the cardinality |A|. We see that

Λ/Θn(A) ∼= (Z/2sn(A)−1)⊕an(A) ⊕ (Z/2sn(A))⊕bn(A) (1.3)

as abelian groups. For a cyclic Λ-module A, the following holds.

Proposition 1.3. Let A be a finite cyclic Λ-module which is annihilated by
(1 + T )2

n

+ 1. Then,

A ∼=
{

Λ/Θn(A) when r2(A) = 2n

Λ/(2, T r2(A)) when r2(A) < 2n or r4(A) = 0

as Λ-modules.

Because of the above results, we can determine the Λ-module structures of
Ãn and An once we know the (2-parts of the) class numbers h̃n and hn of Fn,
respectively.

Now, we shall write down several results first on the narrow class group
Ãn and next on the ordinary one An. When L0 = Q(

√
2ℓ), B̃n (resp. Bn)

denotes the cyclic Λ-submodule of Ãn (resp. An) in Proposition 1.2. We have
r4(B̃n) = r4(Ãn) and r4(Bn) = r4(An) by Proposition 1.2.

Proposition 1.4. When L0 = Q(
√
2ℓ) with ℓ ∈ P−, r4(Ãn) = r4(An) = 0.

From Propositions 1.1–1.4, we obtain the following:

Corollary 1.1. When L0 = Q(
√
2ℓ) with ℓ ∈ P−, the Λ-module B̃n is isomor-

phic to Λ/(2, T 2n) or Λ/(2, T 2f ) according as 0 ≤ n ≤ f − 1 or f ≤ n ≤ e− 1.

In view of Corollary 1.1, we let ℓ ∈ P+.

Proposition 1.5. Let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+. For 0 ≤ n ≤ e−1,

r4(Ãn) ≥ 1 if and only if 0 ≤ n ≤ f − 1.

From Propositions 1.1–1.3 and 1.5, we obtain the following:

Corollary 1.2. Let f ≤ n ≤ e− 1. According as L0 = Q(
√
2) or Q(

√
2ℓ) with

ℓ ∈ P+, the Λ-module Ãn or B̃n is isomorphic to Λ/(2, T 2f ).

In view of Corollaries 1.1 and 1.2, we let 0 ≤ n ≤ f − 1 and ℓ ∈ P+. We
already know that r4(Ãn) ≥ 1 by Proposition 1.5. The following assertion gives
a relation between the 4 and 8-ranks of the class groups Ãn.

Proposition 1.6. Let L0 = Q(
√
2). For 0 ≤ n ≤ f − 2, we have r8(Ãn) ≥ 1

if and only if r4(Ãn+1) ≥ 2n + 1.
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Let L0 = Q(
√
2). When there exists an integer 0 ≤ m ≤ f − 1 with

r8(Ãm) = 0, let mp be the smallest such integer and put bp = r4(Ãmp). Then,
it follows from Propositions 1.1 and 1.6 that

2mp−1 + 1 ≤ bp ≤ 2mp if mp ≥ 1, and bp = 1 if mp = 0. (1.4)

When r8(Ãm) ≥ 1 for all 0 ≤ m ≤ f − 1, we simply put mp = ∞. Thus, the
condition mp < ∞ means 0 ≤ mp ≤ f − 1. In general, when 0 ≤ n ≤ f − 1,

the submodule B̃n of Ãn depends on ℓ. However, there are cases where it does
not depend on ℓ.

Theorem 1.1. When the base field L0 moves over Q(
√
2) or Q(

√
2ℓ) with

ℓ ∈ P+, the following assertions hold.

(I) For 0 ≤ n ≤ f − 1, the 4-rank r4(Ãn) depends only on n and not on
individual L0’s.

(II) Assume that mp < ∞.

(II-i) Let 0 ≤ n ≤ mp − 1. Then, r4(Ãn) = 2n and r8(Ãn) ≥ 1 when

L0 = Q(
√
2), and r4(B̃n) = 2n when L0 = Q(

√
2ℓ).

(II-ii) Let mp ≤ n ≤ f −1. Put Θn = (4, 2T bp , (1+T )2
n

+1). Then, the

Λ-module Ãn is isomorphic to Λ/Θn when L0 = Q(
√
2), and B̃n is

isomorphic to Λ/Θn and independent of ℓ when L0 = Q(
√
2ℓ) and

(n, bp) ̸= (mp, 2
mp). When L0 = Q(

√
2ℓ) and bp = 2mp , we only

have r4(B̃mp
) = 2mp .

(III) Assume that mp = ∞. Then, for each 0 ≤ n ≤ f − 1, r4(Ãn) = 2n and

r8(Ãn) ≥ 1 when L0 = Q(
√
2), and r4(B̃n) = 2n when L0 = Q(

√
2ℓ).

Next, let us write down our results on the ordinary class group An.

Proposition 1.7. When L0 = Q(
√
2ℓ) with ℓ ∈ P−, An

∼= Z/2 for every
0 ≤ n ≤ e− 1.

In view of this proposition, we let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+.

Let L0 = Q(
√
2). By Proposition 1.5 (and Remark 1.1), we already know that

r4(An) = 0 for f ≤ n ≤ e−1. When there exists an integer 0 ≤ n ≤ f −1 with
r4(An) = 0, let np be the smallest such integer and put cp = r2(Anp). When
r4(An) ≥ 1 for all 0 ≤ n ≤ f − 1, we put np = ∞. Then, the condition np < ∞
means 0 ≤ np ≤ f − 1. When np = ∞ and f ≤ e− 1 (or equivalently κp ≥ 2),
we put dp = r2(Af ). When np = ∞ and f = e (or equivalently, κp = 0, 1), we
do not define dp. The following two assertions are analogous to the assertion

(1.4) and Theorem 1.1 for the narrow class group Ãn.
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Proposition 1.8. When np < ∞, we have

2np−1 + 1 ≤ cp ≤ 2np if np ≥ 1, and cp = 1 if np = 0. (1.5)

When np = ∞ and f ≤ e− 1, we have

2f−1 + 1 ≤ dp ≤ 2f . (1.6)

Theorem 1.2. When the base field L0 moves over Q(
√
2) or Q(

√
2ℓ) with

ℓ ∈ P+, the following assertions hold.

(I) Let 0 ≤ n ≤ e − 1. The 2-rank r2(An) for L0 = Q(
√
2) and r2(Bn) for

L0 = Q(
√
2ℓ) depend only on n and not on individual L0’s.

(II) Assume that np < ∞.

(II-i) Let 0 ≤ n ≤ np − 1. Then, r2(An) = 2n and r4(An) ≥ 1 when

L0 = Q(
√
2), and r2(Bn) = 2n when L0 = Q(

√
2ℓ).

(II-ii) Let np ≤ n ≤ e − 1. Then, the Λ-module An is isomorphic to
Λ/(2, T cp) when L0 = Q(

√
2), and Bn is isomorphic to Λ/(2, T cp)

and independent of ℓ when L0 = Q(
√
2ℓ) and (n, cp) ̸= (np, 2

np).

When L0 = Q(
√
2ℓ) and cp = 2np , we only have r2(Bnp) = cp.

(III) Assume that np = ∞.

(III-i) Let 0 ≤ n ≤ f − 1. Then, r2(An) = 2n and r4(An) ≥ 1 when
L0 = Q(

√
2), and r2(Bn) = 2n when L0 = Q(

√
2ℓ).

(III-ii) Let f ≤ n ≤ e − 1. The Λ-module An or Bn is isomorphic to
Λ/(2, T dp) according as L0 = Q(

√
2) or Q(

√
2ℓ).

This paper is organized as follows. In Section 2, we give some related results
and remarks. In Section 3, we give several lemmas which are necessary to show
our results. Proposition 1.3 is shown in Section 3. In Section 4, we introduce
several submodules of k×n /(k

×
n )

2 which play important roles for showing the
results. In Section 5, we construct the class fields of Fn corresponding to
Ãn/Ã

2
n and An/A

2
n, respectively. Lemma 1.1 and Propositions 1.1, 1.2 are

shown in Section 5. In Section 6, we prove Theorems 1.1, 1.2 and Propositions
1.4–1.8. In Section 7, we give several numerical examples mainly related to
Theorems 1.1 and 1.2.
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2 Related results and remarks

In this section, we give some related results and remarks. First, we show the
following simple assertion on the invariants mp and np.

Lemma 2.1. We have np ≥ mp.

Proof. Let L/F be a cyclic extension of degree 8 unramified at all finite prime
divisors. Then, the quartic subextension N/F is everywhere unramified (in-
cluding the infinite ones). Therefore, it follows that r4(AF ) ≥ r8(ÃF ). From
this, we obtain the assertion.

In [10], Morton studied the narrow class number h̃0 and the fundamental
unit of the real quadratic field F0 = Q(

√
2p) (associated to L0 = Q(

√
2)).

We already know that 4|h̃0 by [11]. From Lemma 2.1, we see that mp = 0 if

np = 0, and that np ≥ mp ≥ 1 if 8|h̃0. The following assertion is essentially
due to Morton.

Proposition 2.1. (i) We have 8|h̃0 (or equivalently, mp ≥ 1) if and only if
e ≥ 3 and f ≥ 2.

(ii) When e = f = 2, we have np = 0 and cp = 1.
(iii) When e = 2 and f = 1, we have np = ∞ and dp = 2.
(iv) When e ≥ 3 and f = 1, we have np = 0 and cp = 1.

Proof. The first assertion (i) is nothing but [10, Theorem 3]. For showing (ii)
and (iv), let us assume that e = f = 2 or that e ≥ 3 and f = 1. Then, by (i), we
have 4∥h̃0. Let ϵ be the fundamental unit of F0 = Q(

√
2p). By [10, Theorem

5], we have Nϵ = 1. Therefore, we obtain 2∥h0. This implies that np = 0, and
hence cp = 1 by (1.5). Next, for showing (iii), assume that e = 2 and f = 1.

Then, we have 4∥h̃0 by (i), and Nϵ = −1 by [10, Theorem 5]. Hence, it follows
that 4∥h0. This implies np = ∞, and hence dp = 2 by (1.6).

The following assertion is an immediate consequence of Theorems 1.1, 1.2
and Proposition 2.1.

Proposition 2.2. Let L0 = Q(
√
2), and assume that e ≥ 3 and f ≥ 2.

(i) Assume further that r8(Ã1) = 0. Then the abelian group Ãn is isomor-
phic to (Z/2)⊕(2n−2) ⊕ (Z/4)⊕2 for 1 ≤ n ≤ f − 1.

(ii) Assume further that r4(A1) = 0. Then the abelian group An is isomor-
phic to (Z/2)⊕2 for 1 ≤ n ≤ e− 1.

Proof. As e ≥ 3 and f ≥ 2, we have r8(Ã0) = 1 by Proposition 2.1(i). There-
fore, if r8(Ã1) = 0, then we have mp = 1, and hence bp = 2 by (1.4). Thus, we
obtain the assertion (i) from Theorem 1.1(II-ii) and (1.3). We have r4(A0) = 1
as r8(Ã0) = 1. Therefore, if r4(A1) = 0, then we have np = 1, and hence cp = 2
by (1.5). Thus, we obtain the assertion (ii) from Theorem 1.2(II-ii).
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Remark 2.1. (I) As we will see in Section 7, there are several examples with
np = mp or np = mp + 1 when np < ∞. However, we have at present no
example with mp + 2 ≤ np < ∞.

(II) Let p = 2593, 4513 or 7489. Then, by Table 3 in Section 7, we see that
f = 4 and that r8(Ã1) = 0 and r4(A1) = 0 for L0 = Q(

√
2). Hence, these p

satisfy the assumptions in Proposition 2.2.

Remark 2.2. (I) When L0 = Q(
√
2ℓ) with ℓ ∈ P+, it is shown that r8(Ã0) = 1

if and only if p ≡ ℓ mod 16 and

(
2

pℓ

)
4

= 1 by Zhang and Yue [15, Corollary

2].
(II) In Theorem 1.1(II-ii), the group B̃mp

for L0 = Q(
√
2ℓ) depends on ℓ

when bp = 2mp . Let us give some example. Let e = 2 or f = 1, so that mp = 0
and bp = 1 = 2mp by Proposition 2.1(i) and (1.4). The above mentioned result

[15, Corollary 2] tells us how r8(B̃0) depends on ℓ for such a case. For example,
let p = 73. Then, e = 2, κp = 0 and f = 2. Further Ã0

∼= Z/4 for L0 = Q(
√
2)

and mp = 0. The group B̃0 for L0 = Q(
√
2ℓ) is isomorphic to Z/2 when

ℓ = 113, 313; to Z/4 when ℓ = 17, 193; to Z/8 when ℓ = 41, 89; to Z/16 when
ℓ = 97, 601; to Z/32 when ℓ = 641. These are found in the table of Wada [12]
on class numbers of real quadratic fields.

(III) In Theorem 1.2(II-ii), the group Bnp for L0 = Q(
√
2ℓ) depends on ℓ

when cp = 2np . For example, let p = 73 as above. Then, we have A0
∼= Z/2 for

L0 = Q(
√
2), and np = 0 and cp = 1 = 2np . From the table [12], we find that

B0 is isomorphic to Z/2 when ℓ = 113, 313; to Z/4 when ℓ = 17, 41; to Z/8
when ℓ = 97, 401; to Z/16 when ℓ = 601, 641.

(IV) Several related examples are given in Section 7.

Remark 2.3. Let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+. Then, we see from

Proposition 1.5 that r4(Ãn) ≥ 1 if and only if p splits completely in Q(21/2
n+1

)

similarly to [6, Remark 2.4]. Thus, we can say that Q(21/2
n+1

) is a “governing
field” for the 4-rank of Ãn to be positive.

3 Several lemmas

In this section, we collect several general lemmas, which are necessary to prove
our results. We also show Proposition 1.3 on a finite cyclic Λ-module at the
end of this section.

For a number field F , let OF be the ring of integers and EF = O×
F the

group of units of F . The following lemma is shown in [5, Lemma 6].

Lemma 3.1. Let F be a real abelian field of degree n. Assume that the narrow
class number h̃F is odd and that the prime number 2 splits completely in F ;
(2) = q1 · · · qn. Then, the map

EF −→ (OF /4)
× = (OF /q

2
1)

× ⊕ · · · ⊕ (OF /q
2
n)

×; ϵ → ϵ mod 4

8



is surjective.

The following lemma is well known (Washington [13, Exercise 9.3]).

Lemma 3.2. Let F be a number field. Let q be a prime ideal of F over 2, and
let a ≥ 1 be an integer with qa∥2. Let K = F (

√
w) be a quadratic extension over

F with w ∈ F× relatively prime to q. Then, (i) the prime ideal q is unramified
in K if and only if w ≡ u2 mod q2a for some u ∈ OF , and (ii) it splits in K
if and only if w ≡ u2 mod q2a+1 for some u ∈ OF . In particular, when q is
unramified over Q (a = 1) and its degree is one, (i’) q is unramified in K if
and only if w ≡ 1 mod q2, and (ii’) it splits in K if and only if w ≡ 1 mod q3.

For an integer s ≥ 1, C2s denotes a cyclic group of order 2s. We call a cyclic
extension of degree 2s over a number field simply as a C2s -extension. For a
finite abelian group A, let 2A be the subgroup of A consisting of elements a ∈ A
with a2 = 1A, where 1A is the identity element of A.

We say that an extension K/F is “narrowly unramified” when it is unrami-
fied at all finite prime divisors, and that it is “unramified” when it is unramified
at all prime divisors including the infinite ones. Let M̃F /F and MF /F be the
class fields corresponding to the class groups ÃF and AF of F , respectively.
Then, we have the following identifications via the reciprocity law map:

Gal(M̃F /F ) = ÃF : ρ̃c ↔ c, and Gal(MF /F ) = AF : ρc ↔ c.

Here, ρ̃c (resp. ρc) is the Frobenius automorphism on M̃F (resp. MF ) asso-
ciated to a narrow (resp. an ordinary) ideal class c. The following lemma has
its origin in [11] and was repeatedly used in the study of 4, 8 and 16-ranks of
class groups of quadratic fields, and it is an immediate consequence of class
field theory. For a proof, see [6, Lemma 3.3].

Lemma 3.3. (I) An unramified C2s-extension K/F extends to an unramified
C2s+1-extension if and only if (i) ρc acts trivially on K for every c ∈ 2AF .

(II) A narrowly unramified C2s-extension K/F extends to a narrowly un-
ramified C2s+1-extension if and only if (ii) ρ̃c acts trivially on K for every
c ∈ 2ÃF .

Remark 3.1. Let ℘i (1 ≤ i ≤ r) be some prime ideals of F , and let h be an
odd integer. When 2AF is generated by the ordinary classes [℘h

i ], the condition
(i) in Lemma 3.3 holds if and only if the prime ideals ℘i split completely in
K. When the base field F is totally real and 2ÃF is generated by the narrow
classes [℘h

i ] and [(x)] for all x ∈ F×, the condition (ii) in Lemma 3.3 holds if
and only if K is totally real and the prime ideals ℘i split completely in K.

The following lemma is an exercise in Galois theory, and is quite easy to
show.
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Lemma 3.4. Let K/F be a quadratic extension, and let σ be the nontrivial
automorphism of K/F . Let N = K(

√
α)/K be a quadratic extension with

α ∈ K× \ (K×)2. The extension N is Galois over F if and only if α1+σ = a2

for some a ∈ K×. Further, N/F is a C4-extension if and only if a1−σ = −1,
and it is a (2, 2)-extension if and only if a ∈ F×.

Lemma 3.5. Let K/F be a narrowly unramified quadratic extension, and let
N = K(

√
α)/F be a narrowly unramified C4-extension with α ∈ K×. Then,

every narrowly unramified C4-extension over F containing K is given by the
form K(

√
αc) with some c ∈ F× for which F (

√
c)/F is narrowly unramified.

Proof. LetK(
√
β)/F with β ∈ K× be another narrowly unramified C4-extension

containing K. Then, we see from Lemma 3.4 that α1+σ = a2 and β1+σ = b2

for some a, b ∈ K× such that a1−σ = b1−σ = −1. Thus, (αβ)1+σ = (ab)2

with (ab)1−σ = 1. It follows from Lemma 3.4 that K(
√
αβ) = K(

√
c) for some

c ∈ F×. Therefore, we see that K(
√
β) = K(

√
αc) and that the extension

F (
√
c)/F is narrowly unramified as F (

√
c) ⊆ K(

√
α,

√
β).

Let G = ⟨ρ⟩ be a cyclic group of order 2f , and let R = F2[G]. For 0 ≤ i ≤
2f , let Ui be the principal ideal of R generated by (1 + ρ)i. Then, we have a
filtration

U0 = R ⊃ U1 ⊃ · · · ⊃ U2f−1 ⊃ U2f = {0}.

For 0 ≤ n ≤ f , let

Nf/n =

2f−n−1∑
j=0

(ρ2
n

)j = (1 + ρ)2
f−2n (3.1)

be a norm element in R. Here, the second equality is shown in the proof of [6,
Lemma 4.3]. Let Jn = (Nf/n) be the ideal of R generated by Nf/n. On these
ideals, we showed in [6, Lemma 4.3], the following:

Lemma 3.6 ([6]). (I) The ideals Ui are all the ideals of R, and dimF2
Ui =

2f − i. In particular, the ideals of R are parametrized by their dimensions over
F2.

(II) For 0 ≤ n ≤ f , Jn = U2f−2n and hence J0 = U2f−1 is the smallest
nontrivial ideal of R.

In the later sections, we use this lemma for the cyclic Galois group G = Gf =
Gal(kf/Q) of order 2f .

Remark 3.2. For ideals I and J of R, Lemma 3.6(I) implies that I ∩ J ⊊ J
if and only if I ⊊ J .

Proof of Proposition 1.3. When r2(A) = 2n and r4(A) ≥ 1, the assertion is
already shown in [6, Lemma 3.5]. So it suffices to show the assertion when

10



r2(A) = 2n and r4(A) = 0 and when r2(A) < 2n.
First, let r2(A) = 2n and r4(A) = 0. Then, A ∼= Λ/(2, T 2n) as A is cyclic

over Λ. On the other hand, we observe that sn(A) = 1, an(A) = 0, bn(A) = 2n

from the assumptions, and hence Θn(A) = (2, T 2n) = (2, T r2(A)). Therefore,
we obtain the assertion under this setting.

Next, let r = r2(A) < 2n. It suffices to show that r4(A) = 0. Assume to
the contrary that r4(A) ≥ 1. We can write

A =

s⊕
i=1

(Z/2i)⊕ti

as abelian groups for some integers s ≥ 1, ti ≥ 0 (1 ≤ i ≤ s − 1) and ts ≥ 1.
As r2(A) = r, we have

s∑
i=1

ti = r and

s∑
i=1

iti = ord2(|A|). (3.2)

The assumption r4(A) ≥ 1 means that ord2(|A|) ≥ r + 1. Then, it follows

that s ≥ 2. Put B = A2s−2

. Then, B is a cyclic Λ-module annihilated by
(1 + T )2

n

+ 1 and it is isomorphic to

(Z/2)⊕ts−1 ⊕ (Z/4)⊕ts with ts ≥ 1

as an abelian group. From these conditions on B, we see that ts−1 + ts = 2n

immediately from [5, Proposition 3]. Then it follows from (3.2) that r ≥ 2n, a
contradiction. Thus we have shown r4(A) = 0.

4 Submodules of k×n /(k
×
n )

2

We use the same notation as in Sections 1 and 2. In particular, p = 2e+1q + 1
is a prime number with e ≥ 2 and 2 ∤ q, and kn (0 ≤ n ≤ e+ 1) is the subfield
of Q(ζp) of degree 2n. In this section, we introduce submodules Ṽn, Vn and
Qn of k×n /(k

×
n )

2, which play important roles in the proofs of our results. In all
what follows, we let

h = h̃ke

be the narrow class number of ke. By Conner and Hurrelbrink [2, Corollary
12.9], h is odd and hence it coincides with the ordinary class number of ke.
The narrow class number h̃kn

of kn (0 ≤ n ≤ e) is a divisor of h as ke/Q is
totally ramified at p, and hence it is odd. Let pn be the unique prime ideal of
kn over p, so that we have (p) = p2

n

n in kn. For each 0 ≤ n ≤ e, there exists an
element δn of kn such that kn+1 = kn(

√
δn). The element δn is totally positive

when 0 ≤ n ≤ e − 1, and it is totally negative when n = e. Since kn+1/kn is
ramified only at pn and h is odd, we can choose the element δn so that

(δn) = phn and δn ≡ u2 mod 4 (4.1)

11



for some u ∈ Okn
. Here, the congruence holds by Lemma 3.2(i). Further, since

2 splits completely in kf̃/Q and the primes over 2 remain prime in ke+1/kf̃ ([5,
Lemma 3]), we see from Lemma 3.2(ii), (ii’) that

δn ≡ 1 mod 8 when 0 ≤ n ≤ f̃ − 1 (4.2)

but
δn ̸≡ u2 mod 8 for any u ∈ Okn when f̃ ≤ n ≤ e. (4.3)

We see that
Fn = kn(

√
2δn) or kn(

√
2ℓδn) (4.4)

according as L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P.

We put Gn = Gal(kn/Q), which is a cyclic group of order 2n. Let qf be a
fixed prime ideal of kf over 2, and set qn = Nf/nqf for 0 ≤ n ≤ f − 1, where
Nf/n is the norm map from kf to kn. Then, since 2 splits completely in kf ([5,
Lemma 3]), qn is a prime ideal of kn over 2 and

(2) =
∏

σ∈Gn

qσn.

When (κp ≥ 2 and) f ≤ n ≤ e − 1, the prime ideals over 2 remain prime
in kn/kf by [5, Lemma 3]. We denote the unique prime ideal of kn over qσf
(σ ∈ Gf ) by qσn; q

σ
f = qσn in kn. In the following, we choose and fix a prime

number ℓ ∈ P. We put

2∗ =

{
2 when L0 = Q(

√
2) or Q(

√
2ℓ) with ℓ ∈ P+

−2 when L0 = Q(
√
2ℓ) with ℓ ∈ P−,

and

ℓ∗ =

{
ℓ when L0 = Q(

√
2ℓ) with ℓ ∈ P+

−ℓ when L0 = Q(
√
2ℓ) with ℓ ∈ P−.

Then, by (1.1), we have

2∗ℓ∗ = 2ℓ, ℓ∗ ≡ 1 mod 8, and

(
ℓ∗

p

)
= −1 (4.5)

for every ℓ ∈ P.
Recall that the narrow class number h = h̃ke

of ke is odd and hence that of
kf is also odd. Then, by virtue of Lemma 3.1, we can choose an element ω of
kf such that qhf = (ω) and

ω

(2∗)h
≡ 1 mod q2f and ω ≡ 1 mod (qσf )

2 (4.6)

for σ ∈ Gf with σ ̸= 1f . Here, 1n is the identity element of Gn. For 0 ≤ n ≤
f − 1, we put ωn = Nf/nω so that we have qhn = (ωn) and

ωn

(2∗)h
≡ 1 mod q2n and ωn ≡ 1 mod (qσn)

2 (4.7)
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for σ ∈ Gn with σ ̸= 1n. In particular, we have ω0 = (2∗)h. When L0 = Q(
√
2),

we put ωf = ω. When L0 = Q(
√
2ℓ), we put ωf = ω or ωℓ∗ according as ω is a

square modulo pf or not, so that ωf is a quadratic residue modulo pf by (4.5).

For f ≤ n ≤ e, we put ωn = ωf . Though our target is the class groups Ãn and

An for 0 ≤ n ≤ e − 1, it is convenient to define ωn (and the modules Ṽn, Vn)
also for n = e. In any case, we see that ωn satisfies the congruence (4.7) for
any n as ℓ∗ ≡ 1 mod 8, and that

ωn ≡ Nf/nωf mod (k×n )
2 (4.8)

for 0 ≤ n ≤ f − 1. From (2∗)h = ω0 and (4.8), we have

(2∗)h = Nn/0ωn ≡ Nf/0ωf mod (Q×)2 (4.9)

for 0 ≤ n ≤ f − 1. From the choice of ωf and (4.8), we have

Lemma 4.1. When L0 = Q(
√
2ℓ) with ℓ ∈ P, ωn is a quadratic residue modulo

the prime ideal pn for 0 ≤ n ≤ e.

Let Ṽn be the submodule of k×n /(k
×
n )

2 generated by the class [ωn] over the
group ring F2[Gn]. When L0 = Q(

√
2ℓ), let W̃n be the submodule of k×n /(k

×
n )

2

generated by the class [ℓ∗] and the submodule Ṽn.

Lemma 4.2. Under the above setting, the following assertions hold.
(I) When 0 ≤ n ≤ f − 1, the submodule Ṽn of k×n /(k

×
n )

2 does not depend
on individual L0’s.

(II) According as 0 ≤ n ≤ f − 1 or f ≤ n ≤ e, we have

dimF2
Ṽn = 2n or 2f

and
dimF2

W̃n = 1 + 2n or 1 + 2f

for any L0’s. Further, the natural lifting map φn from k×n /(k
×
n )

2 to F×
n /(F×

n )2

is injective on Ṽn and W̃n.

Proof. The assertion (I) is obvious from the definition of ωn for 0 ≤ n ≤ f − 1.
Let us show the second one (II) when L0 = Q(

√
2ℓ). It suffices to show that

the dimension of φn(W̃n) over F2 equals 1 + 2n or 1 + 2f . Let us show this
when f ≤ n ≤ e (so that ωn = ωf ). Put

x = (ℓ∗)s
∏

σ∈Gf

(ωσ
f )

tσ ∈ kn

with s, tσ = 0, 1. Assume that x is a square in Fn. By (4.4) and (4.5), we have
Fn = kn(

√
2∗ℓ∗δn). Then, it follows from the assumption that x or y = 2∗ℓ∗δnx

is a square in kn. When x is a square in kn, we see that the principal ideal

(x) = (ℓ)s+u
∏

σ∈Gf

(qσf )
htσ
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is a square of an ideal of kn, where u = 0 or
∑

σ tσ according as ωf = ω or
ωℓ∗. Since the prime numbers ℓ and 2 are unramified in kn and h is odd, we
see that s+ u is even and tσ = 0. Hence, s = tσ = 0. Further, we see that y is
not a square in kn because phn∥δn, 2 ∤ h and x is relatively prime to pn. Thus,
we have shown (II) when L0 = Q(

√
2ℓ) and f ≤ n ≤ e. It is shown similarly

for the other cases.

By Lemma 4.2(II) and (4.8), we see that the natural lifting map from
k×n /(k

×
n )

2 to k×n+1/(k
×
n+1)

2 induces an injection Ṽn → Ṽn+1 for 0 ≤ n ≤ f − 1

and an isomorphism Ṽn
∼= Ṽn+1 for f ≤ n ≤ e− 1. Therefore, letting Ṽ = Ṽf ,

we regard Ṽn (0 ≤ n ≤ f − 1) as a submodule of Ṽ , and we identify Ṽn

(f ≤ n ≤ e) with Ṽ . We can naturally regard the modules Ṽn as modules over
the group ring R = F2[Gf ]. By Lemma 4.2(II), we have an isomorphism

ι : Ṽ −→ R

of R-modules sending the class [ωf ] to 1f . We denote the element of R as-
sociated to the norm map Nf/n from kf to kn by the same letter Nf/n. Let
Jn = (Nf/n) be the ideal of R generated by Nf/n. Then, we see from (4.8)
that

ι(Ṽn) = Jn (4.10)

for 0 ≤ n ≤ f . Further, by virtue of the last assertion of Lemma 4.2(II), we
may and shall denote the submodules φn(Ṽn) and φn(W̃n) of F×

n /(F×
n )2 simply

by the same symbols Ṽn and W̃n, respectively.

Remark 4.1. The module Ṽ = Ṽf depends on L0’s by the definition of ωf ,

while its proper submodules Ṽn (0 ≤ n ≤ f − 1) do not depend on L0’s by
Lemma 4.2(I).

In the rest of this section, we let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+, so

that we have 2∗ = 2 and ℓ∗ = ℓ. In this case, we define submodules V and Vn

of Ṽ by

V = {[α] ∈ Ṽ
∣∣ α ≫ 0} and Vn = V ∩ Ṽn = {[α] ∈ Ṽn

∣∣ α ≫ 0}

for 0 ≤ n ≤ e. Here, for x ∈ kn, we write x ≫ 0 when x is totally positive.
Clearly, these are R-submodules of Ṽ . For f ≤ n ≤ e, since Ṽn = Ṽ , we have
Vn = V . For each 0 ≤ n ≤ f − 1, consider an element

α =
∏

σ∈Gn

(ωσ
n)

aσ with aσ = 0, 1

of k×n . By (4.7), it satisfies the congruence

α

2h
≡ 1 mod (qσn)

2 or α ≡ 1 mod (qσn)
2 (4.11)
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according as aσ = 1 or 0. For 0 ≤ n ≤ f − 1, let Qn be the subset of Vn

consisting of the classes [α] for all such α satisfying the stronger condition

α ≫ 0, and
α

2h
≡ 1 mod (qσn)

3 or α ≡ 1 mod (qσn)
3 (4.12)

according as aσ = 1 or 0. We easily see that Qn is an R-submodule of Ṽ , and
that Qn = Qf−1∩ Ṽn from the norm relation (4.8). Let Q and Qn be the ideals

of R corresponding to the R-submodules Qf−1 and Qn of Ṽ :

Q = ι(Qf−1), and Qn = ι(Qn).

Then, as Qn = Qf−1 ∩ Ṽn, we see from (4.10) that

Qn = Q∩ Jn. (4.13)

By (4.9), we observe that [2] ∈ Qn for every n and that Qn is nontrivial.

Lemma 4.3. Let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+. For 0 ≤ n ≤ f − 1, the

submodules Vn and Qn depend only on n and not on individual L0’s. Further,
for f ≤ n ≤ e, dimF2 Vn depends only on n.

Proof. The first assertion on Vn follows from Lemma 4.2(I). The assertion on
Qn holds because ωn = Nf/nω for 0 ≤ n ≤ f − 1 and the element ω defined
in (4.6) does not depend on L0’s. For f ≤ n ≤ e, ωn = ωf depends on L0.
However, the last assertion on dimF2

Vn holds because ωf = ω or ωℓ∗ and ℓ∗ = ℓ
is positive.

5 Class field corresponding to Ãn/Ã
2
n

In this section, we construct the class fields of Fn corresponding to Ãn/Ã
2
n and

An/A
2
n (0 ≤ n ≤ e−1), respectively, and show Lemma 1.1 and Propositions 1.1,

1.2. We begin with showing Lemma 1.1. Let J be the nontrivial automorphism
of Fn/kn.

Proof of Lemma 1.1. Via the identification (1.2), the automorphism J corre-
sponds to (1 + T )2

n ∈ Λ. Since the narrow class number h̃kn of kn is odd, the
norm NFn/kn

= 1+J annihilates Ãn and its quotient An. From this we obtain
the assertion.

Next, let us show Proposition 1.1 on the 2-rank r2(Ãn). Let L/K be a
quadratic extension over a totally real number field K with G = Gal(L/K).
When the narrow class number h̃K is odd, we have the following invariant class
number formula on the narrow class group C̃lL:

|C̃l
G

L | =
|C̃lK | ×

∏
℘ e℘

[L : K]
. (5.1)
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Here, ℘ runs over the prime ideals of K and e℘ is the ramification index of ℘
in L. This is a special case of a general invariant class number formula due to
Gras [4, II, Proposition 6.2.4].

Proof of Proposition 1.1. We show the assertion for the case L0 = Q(
√
2ℓ). It

is shown similarly when L0 = Q(
√
2). Let gn be the number of invariant classes

in Ãn; namely gn is the 2-part of |C̃l
G

Fn
| with G = Gal(Fn/kn) = ⟨J⟩. Let r

be the 2-rank of Ãn. For a class c ∈ Ãn, we see from Lemma 1.1 that cJ = c
if and only if c2 = 1. It follows that gn = 2r. Further, the prime ideals of kn
ramified in Fn are those over the prime numbers p, ℓ and 2. The number of
such prime ideals of kn are

1 + 1 + 2n or 1 + 1 + 2f

according as 0 ≤ n ≤ f − 1 or f ≤ n ≤ e − 1. Accordingly, we see from (5.1)

and 2 ∤ h̃kn
that gn = 21+2n or 21+2f . Thus, we obtain the assertion.

The prime ideals pn and qσn of kn are ramified in Fn, where σ ∈ Gn for
0 ≤ n ≤ f − 1 and σ ∈ Gf for f ≤ n ≤ e − 1. We denote the prime ideals
of Fn over pn and qσn by Pn and Qσ

n, respectively, so that we have pn = P2
n

and qσn = (Qσ
n)

2. When L0 = Q(
√
2ℓ) with ℓ ∈ P, the prime number ℓ remains

prime in kn by (1.1) and the prime ideal of kn over ℓ ramifies in Fn. Let Ln

be the prime ideal of Fn over ℓ; (ℓ) = L2
n.

Lemma 5.1. When L0 = Q(
√
2), 2Ãn is generated by the narrow classes [Qh

n]
and [(x)] with all x ∈ F×

n over the group ring F2[Gn]. When L0 = Q(
√
2ℓ)

with ℓ ∈ P, 2Ãn is generated by the narrow classes [Ph
n], [Q

h
n] and [(x)] with

all x ∈ F×
n over F2[Gn].

Proof. We show the assertion when L0 = Q(
√
2ℓ). It is shown similarly when

L0 = Q(
√
2). We see that the narrow classes [Ph

n] and [Qh
n] are elements

of 2Ãn because P2h
n = phn and Q2h

n = qhn are principal ideals of kn and the
narrow class number h̃kn of kn is odd. Conversely, let c be an arbitrary class
in 2Ãn. Then, by Lemma 1.1, we have cJ = c−1 = c. For an ideal A ∈ c,
it follows that AJ = ρA for some ρ ∈ F×

n with ρ ≫ 0. Then, we see that
η = NFn/kn

ρ ∈ En = Ekn
. We have η ≫ 0 as ρ ≫ 0, and hence we see that

η = ϵ2 for some unit ϵ ∈ En as h̃kn
is odd. Using ρϵ−1 in place of ρ, we observe

that AJ = ρA and NFn/kn
ρ = 1. Then, we can write ρ = x1−J for some

x ∈ F×
n , and we have (xA)J = xA. Therefore, it follows that xA is a product

of some powers of invariant prime ideals Pn, Q
σ
n (σ ∈ Gn), Ln of Fn/kn and

an ideal of kn. As h̃kn
is odd, it follows that the narrow class c = ch = [Ah]

is a product of some powers of the narrow classes [Ph
n], [(Q

σ
n)

h], [Lh
n] and [(x)]

with some x ∈ F×
n . Further, we have

(
√

2ℓδn) = Ph
nLn

∏
σ∈Gn

(Qσ
n)

h
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in Fn = kn(
√
2ℓδn) (see (4.4)). Therefore, we can express the class c as a

product of some powers of [Ph
n], [(Q

σ
n)

h] and [(x)] with some x ∈ F×
n .

For 0 ≤ n ≤ e− 1, we put

M̃1
n = Fn(

√
α
∣∣ [α] ∈ Ṽn)

for every L0. When L0 = Q(
√
2ℓ) with ℓ ∈ P, we put

M̃0
n = Fn(

√
ℓ∗) and M̃2

n = M̃0
nM̃

1
n = Fn(

√
α
∣∣ [α] ∈ W̃n).

Further, when ℓ ∈ P+ (and hence ℓ∗ = ℓ), we put

M1
n = Fn(

√
α
∣∣ [α] ∈ Vn) and M2

n = M̃0
nM

1
n = Fn(

√
ℓ,
√
α
∣∣ [α] ∈ Vn).

Lemma 5.2. (I) The case L0 = Q(
√
2). The extensions M̃1

n/Fn and M1
n/Fn

are the class fields of Fn corresponding to Ãn/Ã
2
n and An/A

2
n, respectively.

(II) The case L0 = Q(
√
2ℓ) with ℓ ∈ P. The extension M̃2

n/Fn is the class
field of Fn corresponding to Ãn/Ã

2
n, and M̃1

n/Fn is the maximal subextension
of M̃2

n/Fn in which the prime ideal Pn splits completely. When ℓ ∈ P+, the
extension M2

n/Fn is the class field of Fn corresponding to An/A
2
n.

Proof. We show the assertion (II) for the case L0 = Q(
√
2ℓ). The assertion (I)

is shown similarly and more easily. We see from Lemma 4.2(II) that the Galois
group Gal(M̃2

n/Fn) is isomorphic to 1 + 2n or 1 + 2f copies of C2 according as
0 ≤ n ≤ f−1 or f ≤ n ≤ e−1. On the other hand, by Proposition 1.1, the quo-
tient Ãn/Ã

2
n is also isomorphic to 1 + 2n or 1 + 2f copies of C2. Therefore, for

showing the first assertion of (II), it suffices to show that M̃2
n/Fn is narrowly

unramified. To show that it is narrowly unramified, it suffices to show that
the quadratic subextensions Fn(

√
ℓ∗)/Fn and Fn(

√
ωσ
n)/Fn with σ ∈ Gn are

narrowly unramified. As Fn/Q is Galois, the extension Fn(
√
ωσ
n)/Fn is nar-

rowly unramified if and only if so is Fn(
√
ωn)/Fn. The extension Fn(

√
ℓ∗)/Fn

is narrowly unramified outside ℓ because of ℓ∗ ≡ 1 mod 8 and Lemma 3.2.
It is unramified also at ℓ because in the (2, 2)-extension Fn(

√
ℓ∗)/kn, ℓ is

ramified in the quadratic subextension Fn/kn. From this, we also see that
Fn(

√
ωn)/Fn is unramified at ℓ even when (f ≤ n ≤ e − 1 and) ωn = ωℓ∗.

Therefore, as (ω) = qhn, Fn(
√
ωn)/Fn is narrowly unramified outside 2. We

have Fn = kn(
√
2∗ℓ∗δn) by (4.4) and (4.5), and hence

Fn(
√
ωn) = Fn(

√
x) with x =

ωn

(2∗)h
× (ℓ∗δn)

−1.

Therefore, it follows from the congruences (4.1), (4.5), (4.7) and Lemma 3.2(i)
that Fn(

√
ωn)/Fn is unramified also at 2. Thus, we have shown that M̃2

n/Fn

is the class field corresponding to Ãn/Ã
2
n. The element ℓ∗ is a quadratic non-

residue modulo Pn by (4.5), and ωn is a quadratic residue modulo Pn by
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Lemma 4.1. Therefore, M̃1
n/Fn is the maximal subextension of M̃2

n/Fn in
which the prime ideal Pn splits completely. When ℓ ∈ P+, we see that M2

n is
the maximal totally real subextension of M̃2

n/Fn from the definition of Vn and
ℓ∗ = ℓ. This implies that M2

n/Fn is the class field corresponding to An/A
2
n.

Proof of Proposition 1.2. We show the assertion (II) for L0 = Q(
√
2ℓ) with

ℓ ∈ P. The assertion (I) is shown similarly. Let M̃n/Fn and Mn/Fn be the
class fields of Fn corresponding to the class groups Ãn and An, respectively.
The Galois groups Gal(M̃n/Fn) and Gal(Mn/Fn) are naturally regarded as
modules over Γn = Gal(Fn/Q), and hence as modules over Λ by (1.2). We
have identifications of Λ-modules:

Gal(M̃n/Fn) = Ãn and Gal(Mn/Fn) = An

via the reciprocity law map. We put

B̃n = Gal(M̃n/M̃
0
n), and Bn = Gal(Mn/M̃

0
n).

The group Bn is defined only when ℓ ∈ P+ (and hence M̃0
n = Fn(

√
ℓ)). By

Lemma 5.1, the narrow (resp. ordinary) class containing Ph
n is an element of

2Ãn (resp. 2An). Let C̃n (resp. Cn) be the subgroup of Ãn (resp. An) gener-
ated by this narrow (resp. ordinary) class.

Let us deal with the narrow class group Ãn. We see that B̃n is a Λ-
submodule of Ãn because M̃0

n is Galois over Q. We see that C̃n is a Λ-
submodule of Ãn since the prime ideal Pn is invariant under the action of
Γn = Gal(Fn/Q). Further, as the narrow class [Ph

n]
2 is trivial, we see that C̃n

is trivial or isomorphic to Λ/(2, T ). By Lemma 5.2(II), the prime ideal Pn re-
mains prime in the quadratic extension M̃0

n/Fn. This implies that [Ph
n] ̸∈ B̃n =

Gal(M̃n/M̃
0
n). It follows that C̃n

∼= Λ/(2, T ) as |C̃n| ≤ 2 and that B̃n ∩ C̃n =
{0}. Therefore, we see that Ãn = B̃n ⊕ C̃n since [Ãn : B̃n] = [M̃0 : Fn] = 2.
Hence, Ã2

n = B̃2
n. Therefore, we see from Lemma 5.2(II) that the subextension

of M̃n/M̃
0
n corresponding to B̃2

n by Galois theory equals M̃2
n = M̃0M̃

1
n. Hence,

we obtain an isomorphism

B̃n/B̃
2
n = Gal(M̃2

n/M̃
0
n)

∼= Gal(M̃1
n/Fn), (5.2)

which is compatible with the action of Γn. As we mentioned after showing
Lemma 4.2, we may regard Ṽn as a submodule of F×

n /(F×
n )2. Then, we can

regard Ṽn as a module over Rn = Z2[Γn] through the surjection Γn → Gn, and
hence as a module over Λ by (1.2). The module Ṽn is cyclic over Λ since it is
cyclic over F2[Gn]. The Kummer pairing

Gal(M̃1
n/Fn)× Ṽn −→ {±1}; (g, [v]) → ⟨b, v⟩ = (

√
v)g−1

is nondegenerate and satisfies ⟨bγ , vγ⟩ = ⟨b, v⟩ for γ ∈ Γn. Thus we obtain an
isomorphism

Gal(M̃1
n/Fn) ∼= H = Hom(Ṽn, {±1}), (5.3)
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which is compatible with the action of Γn. Here, γ ∈ Γn acts on f ∈ H by
fγ([v]) = f([v]γ

−1

). From this, we see that Gal(M̃1
n/Fn) is cyclic over Λ as

Ṽn is cyclic over Λ. Hence, so is B̃n/B̃
2
n by (5.2). Now we see that B̃n is

cyclic over Λ by Nakayama’s lemma. Thus, we have shown the assertion (II)
of Proposition 1.2 for the narrow class group Ãn.

Let us show the assertion for An. Similarly to Ãn, we can show that An =
Bn ⊕ Cn and Cn

∼= Λ/(2, T ). Further, Bn = Gal(Mn/M̃
0
n) is a quotient of

B̃n = Gal(M̃n/M̃
0
n) as a Λ-module since Mn is Galois over Q. Hence, Bn is

cyclic over Λ since so is B̃n.

Corollary 5.1. (I) We have dimF2
Ṽn = r2(Ãn) or r2(B̃n) according as L0 =

Q(
√
2) or Q(

√
2ℓ).

(II) We have dimF2
Vn = r2(An) or r2(Bn) according as L0 = Q(

√
2) or

Q(
√
2ℓ) with ℓ ∈ P+.
(III) The 2-rank r2(An) for L0 = Q(

√
2) and r2(Bn) for L0 = Q(

√
2ℓ) with

ℓ ∈ P+ depend only on n and not individual L0’s.

Proof. The assertions (I) and (II) for L0 = Q(
√
2) are immediate consequences

of Lemma 5.2(I). The assertion (I) for L0 = Q(
√
2ℓ) follows from (5.2) and (5.3).

We can show the assertion (II) for L0 = Q(
√
2ℓ) by a similar way replacing

X̃ to X for every object X̃ in the Kummer theory argument in the proof of
Proposition 1.2. The assertion (III) follows from (II) and Lemma 4.3.

6 Proofs of Theorems

In this section, we prove Theorems 1.1, 1.2 and Propositions 1.4–1.8. We use
the same notation as in the previous sections. First, we show Proposition 1.7.

Proof of Proposition 1.7. Let ℓ ∈ P− and L0 = Q(
√
2ℓ). Let 0 ≤ n ≤ e−1. By

genus theory, the assumption ℓ ∈ P− implies that the ordinary class number of
L0 is odd. The prime number p remains prime in L0 by (1.1), and the C2n+1 -
extension Ln+1/L0 is ramified only at the prime ideal over p. It follows that the
ordinary class number of Ln+1 is odd by [13, Theorem 10.2]. On the other hand,
we observe that Ln+1/Fn is unramified because Ln/kn is unramified outside
2ℓ and kn+1/kn is unramified outside p. Therefore, we obtain An

∼= Z/2.

For s ≥ 2, let L̃n,2s be the composite of all narrowly unramified quadratic
extensions over Fn which extends to a narrowly unramified C2s -extension, and
let Ln,2s be the composite of all unramified quadratic extensions over Fn which
extends to an unramified C2s -extension. We easily see that a narrowly unram-
ified (resp. an unramified) quadratic extension N/Fn extends to a narrowly
unramified (resp. an unramified) C2s -extension if and only if N is contained in
L̃n,2s (resp. Ln,2s), and that L̃n,2s (resp. Ln,2s) is Galois over Q.

19



Lemma 6.1. Let L0 = Q(
√
2ℓ) with ℓ ∈ P, and let [α] ∈ W̃n. We have [α] ∈ Ṽn

if Fn(
√
α) ⊆ L̃n,4.

Proof. Assume that Fn(
√
α)/Fn extends to a narrowly unramified C4-extension.

Then, by Lemma 3.3 (with Remark 3.1) and Lemma 5.1, we see that the prime
ideal Pn of Fn splits in Fn(

√
α). Hence, we see from Lemma 5.2(II) that [α]

is an element of Ṽn.

In view of Lemma 6.1, let Ṽn,2s (resp. Vn,2s) be the submodule of Ṽn (resp.

Vn) consisting of elements [α] for which Fn(
√
α) ⊆ L̃n,2s (resp. Fn(

√
α) ⊆

Ln,2s).

Lemma 6.2. We have r2s(Ãn) ≥ 1 if and only if Fn(
√
2∗) ⊆ L̃n,2s , and

r2s(An) ≥ 1 if and only if Fn(
√
2∗) ⊆ Ln,2s .

Proof. Since L̃n,2s is Galois over Q, Ṽn,2s is a submodule of Ṽn over F2[Gn].

This implies that the image ι(Ṽn,2s) is an ideal of R = F2[Gf ]. By Lemma
3.6(II), the smallest nontrivial ideal of R is J0 = (Nf/0). Therefore, we observe

that r2s(Ãn) ≥ 1 if and only if J0 ⊆ ι(Ṽn,2s). By (4.9), the last condition is

equivalent to [Nf/0ωf ] = [2∗] ∈ Ṽn,2s . Thus we obtain the assertion for Ãn.
The assertion for An is shown similarly.

Proof of Proposition 1.4. As ℓ ∈ P−, we have Fn(
√
2∗) = Fn(

√
−2). Since the

narrowly unramified quadratic extension Fn(
√
−2)/Fn is totally imaginary, we

see from Lemma 3.3 and Remark 3.1 that it does not extends to a narrowly
unramified C4-extension. Now, the assertion follows from Lemma 6.2 with
s = 2.

Proof of Proposition 1.5. We have Fn(
√
2∗) = Fn(

√
2) and ℓ∗ = ℓ in this case.

Further, by (4.4), we have

Fn(
√
2) = Fn(

√
δn) or Fn(

√
ℓδn)

according as L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+. Then, it follows from the

congruences (4.2), (4.3) and Lemma 3.2(ii) that the prime ideals Qσ
n (σ ∈ Gn)

of Fn split in Fn(
√
2) if and only if 0 ≤ n ≤ f − 1. When L0 = Q(

√
2ℓ), we see

that the prime idealPn of Fn splits in Fn(
√
2) because p ≡ 1 mod 8. Therefore,

for L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+, we observe that Fn(

√
2) ⊆ L̃n,4 if

and only if 0 ≤ n ≤ f − 1 from Lemma 3.3 (with Remark 3.1) and Lemma 5.1.
Thus, we obtain the assertion from Lemma 6.2.

Lemma 6.3. Let L0 = Q(
√
2) or Q(

√
2ℓ) with ℓ ∈ P+. Then, for 0 ≤ n ≤ f−1,

we have
Ṽn,4 = Qn and r4(Ãn) = dimF2

Qn

In particular, the module Ṽn,4 and the 4-rank r4(Ãn) depend only on n.
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Proof. Let 0 ≤ n ≤ f−1. We begin with a simple remark. Let x be an element
of kn relatively prime to the prime ideal qσn of kn over 2 with σ ∈ Gn. Then,
we easily see that the prime ideal Qσ

n of Fn over qσn splits in Fn(
√
x)/Fn if and

only if qσn splits in kn(
√
x)/kn. Since 2 splits completely in kn, we obtain the

following equivalence from Lemma 3.2(ii’):

Qσ
n splits in Fn(

√
x)/Fn ⇐⇒ x ≡ 1 mod (qσn)

3. (6.1)

Let
α =

∏
σ∈Gn

(ωσ
n)

aσ

be an element of k×n with aσ = 0, 1. Then, α satisfies the congruence (4.11),
and Fn(

√
α)/Fn is narrowly unramified by Lemma 5.2. By Lemma 3.3 (with

Remark 3.1) and Lemma 5.1, we observe that [α] ∈ Ṽn,4 if and only if α ≫ 0

and the prime ideals Qσ
n with σ ∈ Gn (and Pn when L0 = Q(

√
2ℓ)) split in

Fn(
√
α). As [α] ∈ Ṽn, we see from Lemma 5.2(II) that Pn splits in Fn(

√
α)

when L0 = Q(
√
2ℓ). By (4.4), we have

Fn(
√
α) = Fn(

√
β) with β =

α

2h
× (δnℓ)

−1.

Further, δnℓ ≡ 1 mod 8 by (4.2). Now, we see from (4.11) and (6.1) that
the prime ideals Qσ

n over 2 split in Fn(
√
α)/Fn if and only if α satisfies the

congruence in (4.12). Therefore, we have shown that [α] ∈ Ṽn,4 if and only if

α satisfies the two conditions in (4.12). Thus, we obtain Ṽn,4 = Qn, and hence

r4(Ãn) = dimF2
Qn. The last assertion follows from Lemma 4.3.

For a while, let L0 = Q(
√
2), and let 0 ≤ n ≤ f − 1. Then, the unramified

quadratic extension Ln+1 = Fn(
√
2) over Fn extends to a narrowly unramified

C4-extension by Proposition 1.5 and Lemma 6.2. Let us give a generator of such
a C4-extension. Let ρ be a generator of the cyclic Galois group Gf = Gal(kf/Q)
of order 2f . For each 0 ≤ n ≤ f − 1, we put

an =

2n−1∑
j=0

ρj ∈ R = F2[Gf ] and πn = (ωn+1)
an ∈ k×n+1,

so that we have
[πn] ∈ Ṽn+1.

We can easily show that
an = (1 + ρ)2

n−1

by induction on n. Then, because of (3.1) and (4.8), we see that

ι([πn]) = ι([ωf ]
anNf/n+1) = anNf/n+1 = (1 + ρ)2

f−(2n+1) ∈ R. (6.2)
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Lemma 6.4. Let L0 = Q(
√
2), and let 0 ≤ n ≤ f − 1. Under the above

notation, Ln+1(
√
πn)/Fn is a narrowly unramified C4-extension.

Proof. We see that the element an(1 + ρ2
n

) ∈ R acts on kn+1 as the norm
Nn+1/0 from kn+1 to k0 = Q. Let σ be the nontrivial automorphism of

Ln+1/Fn. Since σ coincides with ρ2
n

on kn+1, we observe from (4.9) that

π1+σ
n = (ωn+1)

an(1+ρ2n ) = Nn+1/0(ωn+1) ≡ 2h mod (Q×)2.

As
√
2
σ
= −

√
2, we see from Lemma 3.4 that Ln+1(

√
πn)/Fn is a C4-extension.

Further, we see from (ωn+1) = qhn+1 and the congruence (4.7) that the extension
Ln+1(

√
πn)/Ln+1 is narrowly unramified because of Lemma 3.2(i). Thus we

obtain the assertion.

Proof of Proposition 1.6. Let L0 = Q(
√
2) and let 0 ≤ n ≤ f − 2. By Lemma

6.2, we have r8(Ãn) ≥ 1 if and only if the unramified quadratic extension
Ln+1 = Fn(

√
2)/Fn extends to a narrowly unramified C8-extension. By Lemma

6.4, Ln+1(
√
πn)/Fn is a narrowly unramified C4-extension containing Ln+1. By

Lemma 3.5, other such C4-extensions are of the form Ln+1(
√
πnα)/Fn with

[α] ∈ Ṽn. Therefore, we see that r8(Ãn) ≥ 1 if and only if there exists some
[α] ∈ Ṽn such that (∗) the narrowly unramified C4-extension Ln+1(

√
πnα)/Fn

extends to a narrowly unramified C8-extension. As Ln+1(
√
πnα)/Fn is a nar-

rowly unramified C4-extension, the primes over 2 split in the quadratic subex-
tension Ln+1/Fn by Lemma 3.3 (with Remark 3.1) and Lemma 5.1. Then,
by the same two lemmas, we see that the condition (∗) on [α] ∈ Ṽn is equiv-
alent to saying that πnα ≫ 0 and the prime ideals of Ln+1 over 2 split in
Ln+1(

√
πnα)/Ln+1.

As n+2 ≤ f , the primes over 2 split in kn+2/kn+1, and hence in Ln+2/Ln+1.
Therefore, we see that the primes over 2 split in Ln+1(

√
πnα)/Ln+1 if and only

if they split in Ln+2(
√
πnα)/Ln+2. As n + 1 ≤ f − 1, we have r4(Ãn+1) ≥ 1

by Proposition 1.5, and hence we see that Ln+2 = Fn+1(
√
2) ⊆ L̃n+1,4 by

Lemma 6.2. Thus, the primes over 2 split in Ln+2/Fn+1 by Lemma 3.3
(with Remark 3.1) and Lemma 5.1. It follows that the primes over 2 split
in Ln+2(

√
πnα)/Ln+2 if and only if they split in Fn+1(

√
πnα)/Fn+1. Thus, we

have shown that r8(Ãn) ≥ 1 if and only if πnα ≫ 0 and the prime ideals Qσ
n+1

(σ ∈ Gn+1) of Fn+1 split in Fn+1(
√
πnα)/Fn+1 for some [α] ∈ Ṽn. Again, by

the same two lemmas, we see that r8(Ãn) ≥ 1 if and only if [πnα] ∈ Ṽn+1,4

for some [α] ∈ Ṽn; namely if and only if [πnα] ∈ Qn+1 for some [α] ∈ Ṽn by
Lemma 6.3.

As [α] ∈ Ṽn, we have ι([α]) ∈ Jn = (Nf/n) by (4.10). Hence, we observe
from (3.1) and (6.2) that

ι([πnα]) = ι([πn]) + ι([α]) = (1 + ρ)2
f−(2n+1) + rα(1 + ρ)2

f−2n

= (1 + ρ)2
f−(2n+1) × u = ι([πn])× u (6.3)
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with
u = 1 + rα(1 + ρ).

Here, rα is an element of R depending on α. As u is a unit of R, we see that
r8(Ãn) ≥ 1 if and only if [πn] ∈ Qn+1. The ideal (ι([πn])) of R coincides with
U2f−(2n+1) by (6.2), and ι(Qn) = Qn by definition. Therefore, we see from
Lemma 3.6 that the condition [πn] ∈ Qn+1 is equivalent to

2n + 1 = dimF2 U2f−(2n+1) ≤ dimF2 Qn+1 = r4(Ãn+1).

Here, the last equality holds by Lemma 6.3. Therefore, we obtain the assertion.

Proof of Proposition 1.8. Let L0 = Q(
√
2) and let 0 ≤ n ≤ f − 1. By Lemma

6.2, we have r4(An) ≥ 1 if and only if there is an unramified C4-extension of
Fn containing Ln+1 = Fn(

√
2). By Lemma 6.4 combined with Lemma 3.5,

the last condition holds if and only if πnα ≫ 0 for some [α] ∈ Ṽn, namely if
and only if [πnα] ∈ Vn+1 for some [α] ∈ Ṽn. By (6.3), this is equivalent to
[πn] ∈ Vn+1. Thus, we have seen that r4(An) ≥ 1 if and only if [πn] ∈ Vn+1.
By (6.2), we have (ι([πn])) = U2f−(2n+1). Therefore, we observe from Lemma
3.6 that [πn] ∈ Vn+1 if and only if

2n + 1 = dimF2
U2f−(2n+1) ≤ dimF2

ι(Vn+1).

Thus, we obtain the equivalence

r4(An) ≥ 1 ⇐⇒ dimF2
Vn+1 ≥ 2n + 1. (6.4)

(This holds even when f = e and n = f − 1 as we have defined Vn also for the
case n = e.) First, assume that np < ∞ (so that 0 ≤ np ≤ f−1). By Corollary
5.1(II), the 2-rank cp = r2(Anp) equals dimF2 Vnp (≤ 2np). When np ≥ 1, we
see that dimF2 Vnp ≥ 2np−1+1 from r4(Anp−1) ≥ 1 and (6.4). Thus, we obtain
(1.5) in this case. When np = 0, cp = r2(A0) = 1 by genus theory. Assume
that np = ∞ and f ≤ e− 1. Then we have

2f−1 + 1 ≤ dimF2
Vf (< 2f )

from r4(Af−1) ≥ 1 and (6.4). Therefore, we obtain (1.6) from Corollary 5.1(II).

Proof of Theorem 1.1. The assertion (I) is contained in Lemma 6.3.
Let us show (II-i). Let 0 ≤ n ≤ mp − 1. First, let L0 = Q(

√
2). Then, from

the very definition of mp, we have r8(Ãn) ≥ 1 for each 0 ≤ n ≤ mp − 1. This

implies that r4(Ãn) = 2n by Proposition 1.3 and (1.3). Here, the Λ-module Ãn

satisfies the assumptions of Proposition 1.3 by Lemma 1.1 and Proposition 1.2.
Then, we see from the assertion (I) that r4(Ãn) = 2n also for L0 = Q(

√
2ℓ)
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with ℓ ∈ P+.
Let us show (II-ii). Let mp ≤ n ≤ f − 1. For L0 = Q(

√
2), we have

r8(Ãmp
) = 0 and r4(Ãmp

) = bp ≤ 2mp . Recall that 2mp = dimF2
Ṽmp

=

dimF2 Jmp by Lemma 4.2(II) and (4.10), and that bp = r4(Ãmp) = dimF2 Qmp

by Lemma 6.3.
First, assume that bp < 2mp . Then, we observe that Qmp

= Q∩Jmp
⊊ Jmp

by (4.13) and Lemma 3.6. This implies that Q ⊊ Jmp
by Remark 3.2. Hence,

Qn = Q∩Jn = Qmp
for every mp ≤ n ≤ f −1. Therefore, we see from Lemma

6.3 that
r4(Ãn) = dimF2 Qn = bp (< 2n) (6.5)

for mp ≤ n ≤ f − 1 and every L0. We have

Λ/Θn
∼= (Z/2)⊕(2n−bp) ⊕ (Z/4)⊕bp

as abelian groups. Therefore, we see from Proposition 1.3 and (1.3) that (6.5)
implies that Ãn or B̃n is isomorphic to Λ/Θn for each n according as L0 =
Q(

√
2) or Q(

√
2ℓ).

Next, assume that bp = 2mp and mp ≤ f − 2. For L0 = Q(
√
2), we already

know that r4(Ãmp+1) ≤ 2mp by r8(Ãmp) = 0 and Proposition 1.6. On the
other hand, since Qmp

⊆ Qmp+1, we see from Lemma 6.3 that

bp = 2mp = r4(Ãmp
) = dimF2

Qmp
≤ dimF2

Qmp+1 = r4(Ãmp+1).

Therefore, we have r4(Ãmp+1) = bp = 2mp < 2mp+1 for L0 = Q(
√
2). Then,

similarly to the case r4(Ãmp) = bp < 2mp , we can show that r4(Ãn) = bp (< 2n)
for every mp + 1 ≤ n ≤ f − 1 and every L0. Therefore, for these n, we see

from Proposition 1.3 and (1.3) that Ãn or B̃n is isomorphic to Λ/Θn according
as L0 = Q(

√
2) or L0 = Q(

√
2ℓ). Let us deal with the case where (bp = 2mp

and) n = mp ≤ f − 2. For L0 = Q(
√
2), we have Ãmp

∼= (Z/4)⊕2mp
as abelian

groups from the definition of mp. It follows from Proposition 1.3 and (1.3) that

the Λ-module Ãmp
is isomorphic to Λ/Θmp

because

Θmp
= (4, 2T bp , (1 + T )2

mp
+ 1) = (4, (1 + T )2

mp
+ 1)

as bp = 2mp . For L0 = Q(
√
2ℓ), we have r4(Ãmp) = 2mp by the assertion (I).

Let bp = 2mp and mp = f − 1. Then, the assertion is shown similarly to
the above case where bp = 2mp and n = mp ≤ f − 2. Thus, we have shown the
assertion (II-ii).

Finally, we show (III). The assertion for L0 = Q(
√
2) follows from the

definition of mp, Proposition 1.3 and (1.3). Then, the assertion for L0 =

Q(
√
2ℓ) follows from (I).

Proof of Theorem 1.2. The assertion (I) is contained in Corollary 5.1(III).
Let us show (II-i). Let 0 ≤ n ≤ np− 1. For a while, let L0 = Q(

√
2). Then,
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from the definition of np, we have r4(An) ≥ 1 for these n. Therefore, we obtain
r2(An) = 2n by Propositions 1.2(I) and 1.3. Then, by the assertion (I), we see
that r2(Bn) = 2n for L0 = Q(

√
2ℓ).

Let us show (II-ii). Let np ≤ n ≤ e − 1. For a while, we let L0 = Q(
√
2).

By the definition of np and Proposition 1.1, we have r4(Anp
) = 0 and cp =

r2(Anp) ≤ 2np . By Proposition 1.3, we have Anp
∼= Λ/(2, T cp) for L0 = Q(

√
2).

It also follows that dimF2
Vnp

= cp ≤ 2np by Corollary 5.1(II).
First, assume that cp < 2np . Then, we observe from Lemma 4.2 that Vnp

⊊
Ṽnp or equivalently ι(Vnp) ⊊ ι(Ṽnp) = Jnp . Since Vnp = V ∩ Ṽnp , it follows that

ι(V ) ⊊ Jnp
from Remark 3.2. This implies that V ⊊ Ṽnp

. Therefore, we see

that Vnp = V and that Vn = V ∩ Ṽn = Vnp for every np ≤ n ≤ e− 1. For these

n, we see from Corollary 5.1(II) that when L0 = Q(
√
2),

r2(An) = dimF2
Vn = dimF2

Vnp
= cp < 2n

and that when L0 = Q(
√
2ℓ), r2(Bn) = cp < 2n. Then, for these n, we observe

from Proposition 1.3 that An or Bn is isomorphic to Λ/(2, T cp) according as
L0 = Q(

√
2) or Q(

√
2ℓ).

Next, assume that cp = 2np and np ≤ e − 2. For a while, let L0 = Q(
√
2).

Then, as r4(Anp
) = 0, we have r2(Vnp+1) ≤ 2np < 2np+1 by (6.4). Further, as

Vn ⊆ Vn+1, we see that

dimF2
Vnp+1 ≥ dimF2

Vnp
= cp = 2np .

Hence, dimF2
Vnp+1 = 2np < 2np+1. As np+1 ≤ e−1, it follows from Corollary

5.1(II) that
r2(Anp+1) = r2(Vnp+1) = cp = 2np < 2np+1

for L0 = Q(
√
2). Then, for np + 1 ≤ n ≤ e− 1, we can show that An or Bn is

isomorphic to Λ/(2, T cp) exactly similarly to the case cp = r2(Anp
) < 2np . Let

us deal with the case n = np. We already remarked that Anp
∼= Λ/(2, T cp) for

L0 = Q(
√
2) at the beginning of the proof of (II-ii). Then, by the assertion (I),

we obtain r2(Bnp
) = cp for L0 = Q(

√
2ℓ).

Finally, assume that cp = 2np and np = e − 1. (This case happens only
when f = e). The assertion is shown exactly similarly to the above case for
n = np. Thus, we have shown the assertion (II-ii).

Let us show (III). The assertion (III-i) is shown similarly to the assertion (II-
i). Let us show (III-ii). As r2(Af ) = dp for L0 = Q(

√
2), we have dimF2

Vf = dp
from Corollary 5.1(II). Let f ≤ n ≤ e − 1. Then, as Vn = Vf , we see from
Corollary 5.1(II) that r2(An) or r2(Bn) equals dp according as L0 = Q(

√
2) or

Q(
√
2ℓ). On the other hand, r4(An) = 0 for these n by Proposition 1.5 and

Remark 1.1. Therefore, we obtain the assertion from Proposition 1.3.
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7 Numerical data

In the previous sections, we were working with a fixed e ≥ 2 and prime numbers
p of the form p = 2e+1q+1. In this section, we deal with various e and various
prime numbers p < 104, and we put

ep = ord2(p− 1)− 1 and fp = min{ep − κp + 1, ep},

so that we have p = 2ep+1q + 1 with 2 ∤ q.
In Table 1 (resp. Table 2), we give the number of prime numbers p < 104

with (ep, κp) = (e, κ) (resp. fp = f).

Table 1. The number of prime numbers with (ep, κp) = (e, κ).

e \ κ 0 1 2 3 4 5 6 7 8 total
0 308 311 0 0 0 0 0 0 0 619
1 0 0 314 0 0 0 0 0 0 314
2 35 39 77 0 0 0 0 0 0 151
3 5 12 18 36 0 0 0 0 0 71
4 2 1 3 10 19 0 0 0 0 35
5 0 0 2 2 6 11 0 0 0 21
6 0 1 0 0 2 3 5 0 0 11
7 0 0 0 0 1 0 1 3 0 5
8 0 0 0 0 0 0 0 0 1 1

total 350 364 414 48 28 14 6 3 1 1228

Table 2. The number of prime numbers with fp = f .

f 0 1 2 3 4 5 6 total
933 152 112 24 6 0 1 1228

Table 3 deals with prime numbers p < 104 with fp > 3, Table 4 those with
fp = 3, and Table 5 those with fp = 2 and ep ≥ 3. By Proposition 2.1, these

are the prime numbers satisfying r8(Ã0) = 1 (or equivalently mp ≥ 1). In these

tables, we give the data on the abelian groups Ãn and An for n = 0, 1 and 2.
In the column Ãn (resp. An), the sequence of integers ẽ1, ẽ2, . . ., ẽr̃ (resp. e1,
e2, . . ., er) indicates that

Ãn
∼=

r̃⊕
i=1

Z/2ẽi (resp. An
∼=

r⊕
i=1

Z/2ei)

as abelian groups. The structures of the abelian groups Ãn and An can be
computed by Magma [9] for n = 0, 1, 2 under the generalized Riemann hy-
pothesis. It seems to be difficult to compute Ã3 and A3 by ordinary commands
of Magma, because the extension degree [F3 : Q] = 16 is large. However, we
can determine the values of mp, bp, np, cp and dp from these data, except
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for d4993. For p = 4993, we have ep = 6, fp = 3, np = ∞ in Table 4, and
hence dp = r2(A3). We compute d4993 with another method, which we explain
later. Note that in Table 4, np = ∞ but dp is not defined for p = 1553, 4273
and 6481 since ep = fp = 3 for these p. (We are dealing with those n with
0 ≤ n ≤ ep − 1.)

On the other hand, Tables 6–8 list the prime numbers p < 104 with ep ≥ 2

and r8(Ã0) = 0 (or equivalently mp = 0). These three tables correspond to the
cases (ii), (iii) and (iv) in Proposition 2.1, respectively.

Table 3. Ãn, An and invariants for prime numbers p with fp > 3.

p fp ep κp Ã0 Ã1 Ã2 mp bp A0 A1 A2 np cp dp
6529 6 6 1 3 2,3 2,2,2,2 2 4 2 1,2 1,1,1,1 2 4
257 4 7 4 3 2,3 1,2,2,2 2 3 2 2,2 1,1,1 2 3
2113 4 5 2 3 2,2 1,1,2,2 1 2 3 1,2 1,1,1 2 3
2593 4 4 0 4 2,2 1,1,2,2 1 2 3 1,1 1,1 1 2
2657 4 4 1 3 2,3 1,2,2,2 2 3 2 2,2 1,1,1 2 3
4513 4 4 0 4 2,2 1,1,2,2 1 2 4 1,1 1,1 1 2
7489 4 5 2 3 2,2 1,1,2,2 1 2 3 1,1 1,1 1 2

Table 4. Ãn, An and invariants for prime numbers p with fp = 3.

p fp ep κp Ã0 Ã1 Ã2 mp bp A0 A1 A2 np cp dp
337 3 3 0 3 2,2 1,1,2,2 1 2 2 2,2 1,1,1 2 3
881 3 3 0 3 2,2 1,1,2,2 1 2 2 2,2 1,1,1 2 3
1217 3 5 3 4 2,3 1,2,2,2 2 3 3 1,2 1,1,1 2 3
1249 3 4 2 3 2,2 1,1,2,2 1 2 2 2,2 1,1,1 2 3
1553 3 3 1 3 2,3 2,2,2,2 2 4 2 1,2 1,2,2,2 ∞ −
1777 3 3 1 3 2,2 1,1,2,2 1 2 3 1,2 1,1,1 2 3
2833 3 3 1 3 2,2 1,1,2,2 1 2 2 1,1 1,1 1 2
4049 3 3 1 3 2,2 1,1,2,2 1 2 2 2,2 1,1,1 2 3
4177 3 3 0 3 2,2 1,1,2,2 1 2 3 2,2 1,1,1,1 2 4
4273 3 3 1 3 2,3 2,2,2,2 2 4 2 1,2 1,1,1,2 ∞ −
4481 3 6 4 4 2,3 1,2,2,2 2 3 3 1,2 1,1,1 2 3
4721 3 3 0 3 2,2 1,1,2,2 1 2 3 2,2 1,1,1,1 2 4
4993 3 6 4 3 2,3 2,2,2,3 ∞ 2 1,2 1,1,1,2 ∞ ∗6
5297 3 3 1 4 2,3 1,2,2,2 2 3 3 1,2 1,1,1 2 3
6353 3 3 0 3 2,2 1,1,2,2 1 2 3 1,2 1,1,1 2 3
6449 3 3 1 3 2,2 1,1,2,2 1 2 2 1,1 1,1 1 2
6481 3 3 1 3 2,2 1,1,2,2 1 2 3 2,2 1,1,1,2 ∞ −
6689 3 4 2 3 2,2 1,1,2,2 1 2 2 1,1 1,1 1 2
7121 3 3 1 3 2,2 1,1,2,2 1 2 2 1,2 1,1,1,1 2 4
8081 3 3 1 3 2,2 1,1,2,2 1 2 2 1,1 1,1 1 2
8609 3 4 2 4 3,3 2,2,2,2 2 4 3 3,3 1,1,1,1 2 4
9137 3 3 1 3 2,2 1,1,2,2 1 2 2 1,2 1,1,1,1 2 4
9281 3 5 3 4 2,3 1,2,2,2 2 3 3 1,2 1,1,1 2 3
9649 3 3 1 3 2,2 1,1,2,2 1 2 3 1,2 1,1,1 2 3
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Table 5. Ãn, An and invariants for prime numbers p with fp = 2 and ep ≥ 3.

p fp ep κp Ã0 Ã1 Ã2 mp bp A0 A1 A2 np cp dp
113 2 3 2 3 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
353 2 4 3 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
577 2 5 4 3 2,3 1,1,1,1 ∞ 2 2,2 1,1,1 ∞ 3
593 2 3 2 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
1153 2 6 5 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
1201 2 3 2 3 2,3 1,1,1,1 ∞ 3 1,2 1,1,1 ∞ 3
1601 2 5 4 3 3,3 1,1,1,1 ∞ 3 2,3 1,1,1,1 ∞ 4
1889 2 4 3 3 2,3 1,1,1,1 ∞ 2 1,2 1,1,1,1 ∞ 4
2129 2 3 2 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
2273 2 4 3 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
2689 2 6 5 3 2,2 1,1,1,1 1 2 2 2,2 1,1,1 ∞ 3
3089 2 3 2 4 2,2 1,1,1,1 1 2 4 1,1 1,1 1 2
3121 2 3 2 3 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
3137 2 5 4 3 4,4 1,1,1,1 ∞ 3 3,4 1,1,1,1 ∞ 4
3217 2 3 2 3 2,3 1,1,1,1 ∞ 2 1,2 1,1,1,1 ∞ 4
3313 2 3 2 4 2,2 1,1,1,1 1 2 4 1,1 1,1 1 2
3361 2 4 3 4 2,2 1,1,1,1 1 2 3 1,2 1,1,1 ∞ 3
3761 2 3 2 3 2,3 1,1,1,1 ∞ 3 1,2 1,1,1 ∞ 3
4001 2 4 3 3 2,3 1,1,1,1 ∞ 2 2,2 1,1,1 ∞ 3
4289 2 5 4 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
4657 2 3 2 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
4801 2 5 4 3 2,3 1,1,1,1 ∞ 2 1,2 1,1,1,1 ∞ 4
4817 2 3 2 3 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
5233 2 3 2 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
5393 2 3 2 4 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
5569 2 5 4 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
7393 2 4 3 3 2,2 1,1,1,1 1 2 2 1,1 1,1 1 2
7793 2 3 2 3 2,3 1,1,1,1 ∞ 3 1,2 1,1,1 ∞ 3
7841 2 4 3 4 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
8161 2 4 3 3 2,2 1,1,1,1 1 2 2 1,2 1,1,1,1 ∞ 4
8209 2 3 2 3 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
8273 2 3 2 3 3,3 1,1,1,1 ∞ 3 2,2 1,1,1,1 ∞ 4
8369 2 3 2 3 2,2 1,1,1,1 1 2 2 2,2 1,1,1 ∞ 3
9377 2 4 3 3 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
9473 2 7 6 4 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
9521 2 3 2 4 2,2 1,1,1,1 1 2 3 1,2 1,1,1 ∞ 3
9601 2 6 5 4 2,2 1,1,1,1 1 2 3 1,1 1,1 1 2
9697 2 4 3 3 2,2 1,1,1,1 1 2 2 1,2 1,1,1,1 ∞ 4
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Table 6. Prime numbers p with fp = 2 and ep = 2.

p mp = 0, bp = 1, np = 0 and cp = 1
73,89,233,281,601,617,937,1033,1049,1097,1193,1289,1433,1481,1609,1721,1753,1801,1913,
2089,2281,2393,2441,2473,2857,2969,3049,3257,3449,3529,3673,3833,4057,4153,4201,4217,
4297,4409,4457,4937,5081,5113,5209,5689,5737,5881,6089,6121,6361,6521,6553,6569,6761,
6793,6841,6857,7129,7481,7529,7577,7753,7817,7993,8233,8537,8713,8761,8969,9001,9209,

9241,9337,9721,9769

Table 7. Prime numbers p with fp = 1 and ep = 2.

p mp = 0, bp = 1, np = ∞ and dp = 2
41,137,313,409,457,521,569,761,809,857,953,1129,1321,1657,1993,2137,2153,2297,2377,

2521,2617,2633,2713,2729,2777,2953,3001,3209,3433,3593,3769,3881,3929,4073,4441,4649,
4729,4793,4889,4969,5273,5417,5449,5641,5657,5801,5849,5897,6073,6217,6329,6473,7001,
7177,7193,7321,7369,7417,7433,7561,7673,8009,8089,8297,8329,8377,8521,8681,9049,9161,

9257,9433,9497,9689,9817,9833,9929

Table 8. Prime numbers p with fp = 1 and ep ≥ 3.

p mp = 0, bp = 1, np = 0 and cp = 1
17,97,193,241,401,433,449,641,673,769,929,977,1009,1297,1361,1409,1489,1697,1873,2017,
2081,2161,2417,2609,2753,2801,2897,3041,3169,3329,3457,3617,3697,3793,3889,4129,4241,
4337,4561,4673,5009,5153,5281,5441,5521,5857,5953,6113,6257,6337,6577,6673,6737,6833,
6961,6977,7057,7297,7457,7537,7649,7681,7873,7937,8017,8353,8513,8641,8689,8737,8753,

8849,8929,9041,9857

Let us look back our results using the data in the tables. In the following,
we denote the groups B̃n and Bn in Theorems 1.1 and 1.2 for L0 = Q(

√
2l)

with l ∈ P+ by B̃n(l) and Bn(l). We use the symbols Ãn and An only for the
case L0 = Q(

√
2).

First, let us look at p = 6529 in Table 3. As fp = ep = 6, our targets are
the class groups of Fn with 0 ≤ n ≤ 5. By Theorem 1.1 and the data in Table
3, we observe that

Ã0
∼= Z/8,

Ã1
∼= Z/4⊕ Z/8,

Ã2
∼= (Z/4)⊕4,

Ãn
∼= (Z/2)⊕(2n−4) ⊕ (Z/4)⊕4 ∼= B̃n(l) for 3 ≤ n ≤ 5.

Further, by Theorem 1.2 and the data in Table 3, we observe that

A0
∼= Z/4,

A1
∼= Z/2⊕ Z/4,

A2
∼= (Z/2)⊕4,

An
∼= (Z/2)⊕4 ∼= Bn(l) for 3 ≤ n ≤ 5.

The groups B̃n(ℓ) and Bn(ℓ) are independent of ℓ for 3 ≤ n ≤ 5. However, as
Table 9 shows, the structures of B̃n(l) and Bn(l) depend on l for n = 0, 1 and
2. This is caused by the data mp = 2, bp = 2mp , np = 2 and cp = 2np in Table
3. Recall here that the assertion of Theorem 1.1(II-i) (resp. Theorem 1.2(II-
i)) is divided into two cases according as (n, bp) = (mp, 2

mp) (resp. (n, cp) =
(np, 2

np)) or not.
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Table 9. B̃n(l) and Bn(l) for p = 6529 and L0 = Q(
√
2l).

l B̃0(l) B̃1(l) B̃2(l) B0(l) B1(l) B2(l)
97 2 2,2 2,2,2,2 1 1,1 1,2,2,2
137 2 2,2 2,2,2,2 2 2,2 1,1,1,1
193 2 2,2 2,2,2,2 1 1,1 1,1,1,2
233 2 2,2 2,2,2,3 1 1,1 1,1,2,2
241 2 2,2 2,2,2,2 1 1,1 2,2,2,2
353 3 2,3 2,2,2,2 2 2,3 1,1,1,1
449 2 2,2 2,2,2,2 1 1,1 2,2,2,2
521 2 2,2 2,2,2,2 2 1,2 1,1,1,1
569 2 2,2 2,2,2,2 2 1,2 1,1,1,1
593 3 2,3 2,2,2,2 3 1,2 1,1,1,1

Next, let us look at p = 257 in Table 3. As fp = 4 and ep = 7, our targets
are the class groups of Fn with 0 ≤ n ≤ 6. By Theorem 1.1, Corollary 1.2 and
the data in Table 3, we see that

Ã0
∼= Z/8,

Ã1
∼= Z/4⊕ Z/8,

Ã2
∼= Z/2⊕ (Z/4)⊕3 ∼= B̃2(l),

Ã3
∼= (Z/2)⊕5 ⊕ (Z/4)⊕3 ∼= B̃3(l),

Ãn
∼= (Z/2)⊕16 ∼= B̃n(l) for 4 ≤ n ≤ 6.

Further, by Theorem 1.2 and the data in Table 3, we see that

A0
∼= Z/4,

A1
∼= (Z/4)⊕2,

An
∼= (Z/2)⊕3 ∼= Bn(l) for 2 ≤ n ≤ 6.

The groups B̃n(ℓ) and Bn(ℓ) are independent of ℓ for 2 ≤ n ≤ 6. However, as
Table 10 shows, the structures of B̃n(l) and Bn(l) depend on l for n = 0 and 1.
This is caused by the data mp = 2, bp ̸= 2mp , np = 2 and cp ̸= 2np in Table 3.

Table 10. B̃n(l) and Bn(l) for p = 257 and L0 = Q(
√
2l).

l B̃0(l) B̃1(l) B̃2(l) B0(l) B1(l) B2(l)
41 2 2,2 1,2,2,2 2 1,2 1,1,1
97 2 2,2 1,2,2,2 1 1,1 1,1,1
233 2 2,2 1,2,2,2 1 1,1 1,1,1
281 2 2,2 1,2,2,2 1 1,1 1,1,1
313 2 2,2 1,2,2,2 2 1,2 1,1,1
337 3 2,3 1,2,2,2 3 2,2 1,1,1
353 3 2,3 1,2,2,2 2 1,2 1,1,1
409 2 2,2 1,2,2,2 2 2,2 1,1,1
449 2 2,2 1,2,2,2 1 1,1 1,1,1
521 2 2,2 1,2,2,2 2 1,2 1,1,1
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Let p = 4993, and let us briefly explain how to compute the value dp in Table
4. Since fp = 3 and [k3 : Q] = 8 is small, we can use Magma for computing dp
under the generalized Riemann hypothesis. We have dimF2 Vf = r2(Af ) = dp
by Corollary 5.1(II). First, we explicitly compute the integer ω ∈ k3 defined by
(4.6). Then, we have Ṽ = Ṽf = F2[Gf ] · [ω] and

V = Vf = {[α] ∈ Ṽf

∣∣ α ≫ 0} = (1 + ρ)2
f−dp Ṽf (∼= (Z/2)⊕dp).

Here, the third equality for Vf holds by dimF2
Vf = dp and Lemma 3.6(I). Next,

we check using Magma that ω1+ρ is not totally positive and ω(1+ρ)2 is totally
positive. This implies that 2f − dp = 2 and hence dp = 6.
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