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Abstract

We study a pairing of p-units in the 4p-cyclotomic field, following results on the p-
cyclotomic field by McCallum–Sharifi. We discuss the distribution of the number of nontrivial
zeros for each prime number p < 216 = 65, 536 under a conjecture, which give a sufficient
condition for Greenberg’s generalized conjecture. We also explain rare zeros which do not
appear in the p-cyclotomic field.
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1 Introduction

We first explain the main purpose of the computation, i.e., Greenberg’s generalized conjecture.
Let k be a finite extension of the rational number field Q and p an odd prime number. Let k̃ be
the maximal multiple Zp-extension of k with Gal(k̃/k) ' Zd

p. Leopoldt’s conjecture for k and
p implies that d = r2(k) + 1, where r2(k) is the number of complex places of k. Let kn be the
intermediate field in k̃/k such that Gal(kn/k) ' (Z/pnZ)d, An the p-part of the ideal class group
of kn, and X∞ = lim

←
An, where the inverse limit is taken with respect to norm maps. Further

let γi (1 ≤ i ≤ d) be the topological generator of Gal(k̃/k) with 〈γ1, γ2, ..., γd〉 ' Zd
p. We can

consider X∞ as a Λ̃ = Zp[[T1, T2, ..., Td]]-module by the action of Ti = γi − 1.

Conjecture 1.1 (Greenberg’s generalized conjecture). For any k and p, X∞ is a pseudo-null
Λ̃-module, i.e., htΛ̃(AnnΛ̃X∞) ≥ 2.

Remark 1.1. When d = 1, k is a totally real number field, and k∞ is the cyclotomic Zp-
extension. By Iwasawa’s class number formula, we have ♯An = pλn+µpn+ν for any sufficiently
large n, where λ = λp(k∞/k), µp(k∞/k) ∈ Z≥0 and ν = νp(k∞/k) ∈ Z are the Iwasawa
invariants. The above conjecture implies that X∞ is finite, i.e., λp(k∞/k) = µp(k∞/k) = 0,
which is called Greenberg’s conjecture for the Iwasawa invariants of totally real number fields.

Remark 1.2. For any Zr
p-extension, it is shown that X∞ is a finitely generated torsion Λ =

Zp[[T1, T2, ..., Tr]]-module in [2] under some assumptions, which is known to be unnecessary.

∗ORCID:0000-0003-3928-9481 The author was partially supported by JSPS KAKENHI Grant Number
JP17K05176 and JP20H00115.
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Hence we have htΛ(AnnΛX∞) ≥ 1 in general. Moreover, in [1], it is shown that ♯An =

p(ln+mpn+O(1))p(r−1)n
for any sufficiently large n.

In [3, 4, 5], a sufficient condition for the conjecture is given by using cup products of cyclo-
tomic units of the p-cyclotomic field k = Q(ζp). Assume that the Kummer-Vandiver conjecture

holds for p, i.e., A+
0 =

1 + J

2
A0 is trivial, where J is the complex conjugate. Note that A+

0

is isomorphic to the p-part of the ideal class group of the maximal real subfield k+ of k. Put
E′k,p = Ok[1/p]

×/(Ok[1/p]
×)p and µp = 〈ζp〉. By the assumption on A+

0 , E
′
k,p is generated by

cyclotomic p-units. We consider the following cup product:

H1(Gk,p, µp)×H1(Gk,p, µp) → H2(Gk,p, µ
⊗2
p ),

where Gk,p is the Galois group of the maximal extension of k unramified outside p. This product
can be represented as the following pairing:

E′k,p × E′k,p → (Ak/pAk)⊗ µp.

Let ∆ = Gal(k/Q) ' (Z/pZ)×, and let ω be the Teichmüller character. Put Jp = Z/(p−1)Z. For

j ∈ Jp, denote by Y (j) = eωjY the ωj-part of Zp[∆]-module Y , where eωj =
1

♯∆

∑
δ∈∆

ωj(δ)δ−1 ∈

Zp[∆]. By decompositions, we can define the following pairing:⊕
j∈2Jp

{
(E′k,p)

(j) × (E′k,p)
(2−i−j)

}
→ (Ak/pAk)

(1−i) ⊗ µp

(c
(j)
p , c

(2−i−j)
p ) 7→ ei,j = 〈c(j)p , c

(2−i−j)
p 〉i,

where i ∈ 2Jp and c(j) = [(1−ζp)
(j)] ∈ (E′k,p)

(j) . Put Ip = {i ∈ 2Jp |A(1−i)
k 6= {0}} and rp = ♯Ip.

Theorem 1.1 (Sharifi [4, 5]). For sp = ♯{j | ei,j 6= 0 for any i ∈ Ip},

htΛ̃(AnnΛ̃X∞) ≥ sp
r2p − rp + 1

+ 1.

In particular, data on (rp, sp) implies Greenberg’s generalized conjecture for p < 1, 000.

The procedure to check the conjecture is as follows:
(i) Compute rp from the generating function of Bernoulli numbers modulo p.
(ii) Check ei,i0 6= 0 for some i0 by computation of an ideal of Hecke ring.
(iii) Compute sp from relations among ei,j ’s.
(iv) Apply data on rp and sp to Theorem 1.1.

In [4, 5], (ii) (resp. (iii)) is computed for p < 1, 000 (resp.25, 000) in the p-cyclotomic field.
A lower bound of sp is obtained by the number of zeros: zp,i = ♯{j ∈ 2Jp | ei,j = 0} for i ∈ Ip.
In this paper, following the computation, we study the distribution of the number of zeros in
the 4p-cyclotomic field under a conjecture.

Theorem 1.2. Let z′p,i, z′4p,i and z′4p,χ,i be the half number of nontrivial zeros in the pairing

defined in §3. For p < 216, under Conjecture 4.1 for these prime numbers, the distributions are
given in Table 1:

Table 1. The number of (p, i) with z′ = m.
m 0 1 2 3 4 5

z′p,i 2523 640 80 4 0 0

z′4p,i 2515 656 69 7 0 0

z′4p,χ,i 2013 973 241 50 5 1
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Each distribution is similar to the Poisson distribution Po(1/4) or Po(1/2). We also obtain
rare zeros which do not appear in the p-cyclotomic field.

2 Definition of maps and K2-groups

We recall some definitions and theorems (cf. [3, §3]). The Milnor K2-group of a commutative
ring R is defined as follows:

KM
2 (R) = (R× ⊗R×)/〈a⊗ (1− a); a, 1− a ∈ R×〉.

Let K be a number field with K ⊃ µp. In [6], a particular choice of isomorphisms is described
as a Chern class map:

chp : K2(OK [1/p])/p →̃H2(GK,p, µ
⊗2
p ).

By a classical result of Matsumoto, we may identifyKM
2 (K) withK2(K). The groupK2(OK [1/p])

may defined via the exact localization sequence:

0 → K2(OK [1/p]) → K2(K) →
⊕
q∤p

k×q → 0,

where kq denotes the residue field of K at q. Since two p-units pair trivially under the tame
symbol, the image of

KM
2 (OK [1/p]) → KM

2 (K) = K2(K)

is contained in K2(OK [1/p]). This yields KM
2 (OK [1/p]) → K2(OK [1/p]) and

κ′p : K
M
2 (OK [1/p])/p → K2(OK [1/p])/p.

Here, the map
up : K

M
2 (OK [1/p])/p → H2(GK,p, µ

⊗2
p )

coincides with (−chp) ◦ κ′p. Further, the natural map

np : E′K,p × E′K,p → KM
2 (OK [1/p])/p

is surjective. Finally, define the map

κp : E′K,p × E′K,p → H2(GK,p, µ
⊗2
p ),

by κp = up ◦ np = (−chp) ◦ κ′p ◦ np.

Conjecture 2.1 (McCallum-Sharifi). For all p and k = Q(ζp) which satisfy the Kummer-
Vandiver conjecture, κ′p is surjective, i.e., by the ∆-decomposition,

κp,i : (E′k,p × E′k,p)
(2−i) → H2(Gk,p, µ

⊗2
p )(2−i),

is surjective for all i ∈ Jp.
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3 Relations of a pairing in the 4p-cyclotomic fields

Put ζ4p = ζ4ζp =
√
−1ζp, K = Q(ζ4p) = Q(

√
−1, ζp), k = Q(ζp) ∆̃ = Gal(K/Q) and ∆ =

Gal(k/Q) ' Gal(K/Q(
√
−1)). We consider ∆ as the subgroup of ∆̃ by this isomorphism.

The Dirichlet character group of ∆̃ is {χiωj | i = 0, 1, j ∈ Ip}, where χ = χ−4 is the Dirichlet

character associated to Q(
√
−1). Let J be the complex conjugate in ∆. We write A± =

1± J

2
A,

A(χi,j) = ẽχiωjA for a Zp[∆̃]-module A, and A(j) = eωjA for a Zp[∆]-module A, where ẽχiωj =
1

♯∆̃

∑
δ∈∆̃

χiωj(δ)δ−1 ∈ Zp[∆̃]. Note that ẽχ0ωj =
1 + τ

2
eωj , where 〈τ〉 = Gal(K/k). We also write

α(χi,j) and α(j) for an element of α ∈ A.
Then, we have Ip = I4p,χ0 = {i ∈ 2Jp |A(1−i)

k ' A
(χ0,1−i)
K 6= {0}} and rp = ♯I4p,χ0 . Put

I4p,χ = {i ∈ Jp \ 2Jp |A(χ,1−i)
K 6= {0}} and r4p,χ = ♯I4p,χ.

Even when p splits in Q(
√
−1), the p-part of the subgroup generated by the ideal classes

of prime ideals above p is also trivial in AK . Hence, as in [3, §2], we have the following exact
sequence:

0 → (AK/pAK)⊗ µp → H2(GK,p, µ
⊗2
p ) →

⊕
v|p

µp → µp → 0.

Since (AK/pAK)(χ,0) is trivial, this sequence implies that

(AK/pAK)(χ,1−i) ⊗ µp ' H2(GK,p, µ
⊗2
p )(χ,2−i)

for any i ∈ I4p,χ. We also have

(Ak/pAk)
(1−i) ⊗ µp ' H2(Gk,p, µ

⊗2
p )(2−i)

for any i ∈ Ip.

In §3.1 and §3.2, we consider a pairing whose image is contained in (AK/pAK)(χ
0,1−i) ⊗

µp ' (Ak/pAk)
(1−i) ⊗ µp for i ∈ Ip. In §3.3, we consider a pairing which are contained in

(AK/pAK)(χ,1−i) ⊗ µp for i ∈ I4p,χ.

3.1 The p-cyclotomic field

We fix p and i ∈ Ip ⊂ 2Jp. For j ∈ 2Jp, put

j′ = 2− i− j ∈ 2Jp.

In §1–2, we introduce the following pairing:

κp,i :
⊕
j∈2Jp

{
(E′k,p)

(j) × (E′k,p)
(j′)
}

→ (Ak/pAk)
(1−i) ⊗ µp

(c
(j)
p , c

(j′)
p ) 7→ ei,j = 〈c(j)p , c

(j′)
p 〉i.

Proposition 3.1. (cf. [3, §5]) For all even integers a with 4 ≤ a ≤ p− 1,∑
j∈2Jp

(1 + aj − 2j)(1− 2j
′
)(1− (a− 1)j

′
)ei,j = 0.

Further, for any j ∈ 2Jp,
ei,j + ei,j′ = 0.
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3.2 4p-cyclotomic field I

We fix p and i ∈ Ip ⊂ 2Jp. For j ∈ Ip, put

j′ = 2− i− j.

As in §2, we consider the following pairing:

κ4p,i :
⊕

j∈Jp\2Jp

{
(E′K,p)

(χ,j) × (E′K,p)
(χ,j′)

}
⊕
⊕
j∈2Jp

{
(E′K,p)

(χ0,j) × (E′K,p)
(χ0,j′)

}
→ (AK/pAK)(χ

0,1−i) ⊗ µp

(c
(χ,j)
4p , c

(χ,j′)
4p ) 7→ fi,j = 〈c(χ,j)4p , c

(χ,j′)
4p 〉4p,i,

(c
(j)
p , c

(j′)
p ) 7→ ei,j = 〈c(j)p , c

(j′)
p 〉4p,i,

where c(χ,j) = [(1− ζ4p)
(χ,j)] ∈ (E′K,p)

(χ,j). For a ∈ Z and j ∈ Jp, we define

ua,j =

{
1 a ≡ 1mod 4
2j − 1 a ≡ 3mod 4.

Proposition 3.2. For all odd integers a with 3 ≤ a ≤ p− 2,∑
j∈Jp\2Jp

(1− (−1)
a−1
2 aj)fi,j

+
∑
j∈2Jp

2j−1(2j − 1)(aj − 1)
(
2j

′−1(1− 2j
′
) + ua,j′(a− 1)j

′
)
ei,j = 0.

Further, for any j ∈ Jp \ 2Jp,
fi,j + fi,j′ = 0.

3.3 4p-cyclotomic field II

We fix p and i ∈ I4p,χ ⊂ Jp \ 2Jp. For j ∈ Jp, put

j′ = 2− i− j.

As in §2, we consider the following pairing:

κ4p,χ,i :
⊕

j∈Jp\2Jp

{
(E′K,p)

(χ,j) × (E′K,p)
(χ0,j′)

⊕(E′K,p)
(χ0,j′) × (E′K,p)

(χ,j)
}

→ (AK/pAK)(χ,1−i) ⊗ µp

(c
(χ,j)
4p , c

(j′)
p ) 7→ gi,j = 〈c(χ,j)4p , c

(j′)
p 〉4p,χ,i

(c
(j′)
p , c

(χ,j)
4p ) 7→ gi,j′ = 〈c(j

′)
p , c

(χ,j)
4p 〉4p,χ,i,

where c(j
′) ∈ (E′k,p)

(j′) ' (E′K,p)
(j′).

Proposition 3.3. For all odd integers a with 3 ≤ a ≤ p− 2,∑
j∈Jp\2Jp

{(1− (−1)
a−1
2 aj)

(
2j

′−1(1− 2j
′
) + ua,j′(a− 1)j

′
)
gi,j

+2j
′−1(2j

′ − 1)(1− aj
′
)gi,j′} = 0.

5



For all even integers a with 4 ≤ a ≤ p− 1,∑
j∈Jp\2Jp

{2j′−1(2j′ − 1) ((a− 1)j
′ − 1)gi,j

+(1− (−1)
a−2
2 (a− 1)j)

(
2j

′−1(1− 2j
′
) + ua+1,j′a

j′
)
gi,j′} = 0.

Further, for any j ∈ Jp \ 2Jp,
gi,j + gi,j′ = 0.

3.4 Proofs of propositions

The anti-symmetry relation of each proposition is obtained form the anti-symmetry relation of
K2(K). We prove the other relations by using special cyclotomic units. For n, a ∈ Z≥1, we
define the following element of Q(ζn):

ρn,a =
a−1∑
j=0

(−ζn)
j = 1− ζn + ζ2n + · · ·+ (−1)a−1ζa−1n .

Then, we have

ρn,a =
1 + (−1)a−1ζan

1 + ζn
=


1− ζan
1 + ζn

=
(1− ζan)(1− ζn)

1− ζ2n
a ≡ 0mod 2

1 + ζan
1 + ζn

=
(1− ζ2an )(1− ζn)

(1− ζan)(1− ζ2n)
a ≡ 1mod 2.

(3.1)

For n = 4p, we have

1− ζa4p =


1− ζa4p a ≡ 1mod 2

1− ζ2ap
1− ζap

a ≡ 2mod 4

1− ζap a ≡ 0mod 4.

(3.2)

Proposition 3.4. (cf. [3, §5]) For n = p or 4p, and a ∈ Z with 2 ≤ a ≤ p − 1, ρn,a and
ρn,a−1 are p-units in K. Further, the image κp([ρn,a, ρn,a−1]) is trivial in H2(GK,p, µ

⊗2
p ), where

[ρn,a, ρn,a−1] is the natural class of (ρn,a, ρn,a−1) in E′K,p × E′K,p.

Proof. Since 1 − ζp and 1 − ζ4p are p-units in K, the first assertion follows immediately from
the above expression. In the following, {x, y} denotes an element in KM

2 (K)/p. For n = p,
it is easy to see that {1 − ζan, ζn} = a−1{1 − ζan, ζ

a
n} = 0 and {ρn,a, ζn} = 0. For n = 4p, if

a ≡ 1mod 2, we have {1− ζan, ζn} = a−1{1− ζan, ζ
a
n} = 0. If a ≡ 0mod 2, as ζ4p = ζ4ζp, we also

have {1 − ζan, ζn} = {1 − ζan, ζp} = 0 by the above expression. These imply that {ρn,a, ζn} = 0.
Since ζnρn,a−1 = ζn − ζ2n + · · ·+ (−1)a−2ζa−1n = 1− ρn,a,

{ρn,a, ρn,a−1} = {ρn,a, ζn}+ {ρn,a, ρn,a−1} = {ρn,a, 1− ρn,a} = 0.

This implies the second assertion.

Before the proofs of propositions, we give some equalities. For j ∈ Z with (j, 4p) = 1, let δj

be an element of Gal(Q(ζ4p)/Q) satisfying ζ
δj
4p = ζj4p. Let a ∈ Z with 1 ≤ a ≤ p− 1. Then, there

exists a′ ∈ Z such that a′ ≡ 1mod 4 and a′ ≡ amod p. We have

[(1− ζap )
(χ0,j)] = [(1− ζap )

1+τ
2

eωj ] = [(1− ζap )
(j)] = [((1− ζp)

δa′ )(j)] = (c(j))ω
j(δa′ ) = (c(j))a

j
(3.3)
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and
[(1− ζap )

(χ,j)] = [1]. (3.4)

Further, if a ≡ 1 mod 2, we have

[(1− ζa4p)
(χ0,j)] = [(1− ζa4p)

1+τ
2

eωj ] =

(1− ζ4ap
1− ζ2ap

)(j) 1
2

 = [(c(j))2
−1(2a)j(2j−1)] (3.5)

and

[(1− ζa4p)
(χ,j)] = [((1− ζ4p)

δa)(χ,j)] = (c(χ,j))χω
j(δa) = (c(χ,j))χ(a)a

j
= (c(χ,j))(−1)

a−1
2 aj . (3.6)

The first relation of Proposition 3.1. By Proposition 3.4, we have

{ρp,a, ρp,a−1} =

{
(1− ζap )(1− ζp)

1− ζ2p
,
(1− ζ

2(a−1)
p )(1− ζp)

(1− ζa−1p )(1− ζ2p )

}
= 0.

By (3.3), the contribution of ρ
(j)
p,a to the coefficient is

aj + 1− 2j ,

and that of ρ
(j′)
p,a−1 is

(2(a− 1))j
′
+ 1− (a− 1)j

′ − 2j
′
= (1− 2j

′
)(1− (a− 1)j

′
).

Therefore, we obtain the first relation.

The first relation of Proposition 3.2. By Proposition 3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζ2a4p )(1− ζ4p)

(1− ζa4p)(1− ζ24p)
,
(1− ζa−14p )(1− ζ4p)

1− ζ24p

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is

1− χ(a)aj = 1− (−1)(a−1)/2aj ,

and that of ρ
(χ,j′)
4p,a−1 is 1. On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ

(χ0,j)
4p,a

is

(4a)j − (2a)j + 2−12j(2j − 1)− 2−1(2a)j(2j − 1)− (4j − 2j) = 2j−1(2j − 1)(aj − 1),

and that of ρ
(χ0,j′)
4p,a−1 is

(a− 1)j
′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + (a− 1)j

′
a ≡ 1mod 4

(2(a− 1))j
′ − (a− 1)j

′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
)

= 2j
′−1(1− 2j

′
) + (2j

′ − 1)(a− 1)j
′

a ≡ 3mod 4,

that is, 2j
′−1(1− 2j

′
) + ua,j′(a− 1)j

′
. Therefore, we obtain the first relation.
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The first and second relations of Proposition 3.3. For an odd integer a, by Proposition
3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζ2a4p )(1− ζ4p)

(1− ζa4p)(1− ζ24p)
,
(1− ζa−14p )(1− ζ4p)

1− ζ24p

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is

1− χ(a)aj = 1− (−1)(a−1)/2aj ,

and that of ρ
(χ0,j′)
4p,a−1 is

2j
′−1(1− 2j

′
) + ua,j′(a− 1)j

′

as in Proposition 3.2.

On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ
(χ0,j′)
4p,a is

2j
′−1(2j

′ − 1)(aj
′ − 1),

and that of ρ
(χ,j)
4p,a−1 is 1. Therefore, we obtain the first relation.

For an even integer a, by Proposition 3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζa4p)(1− ζ4p)

1− ζ24p
,
(1− ζ

2(a−1)
4p )(1− ζ4p)

(1− ζa−14p )(1− ζ24p)

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is 1, and that of ρ

(χ0,j′)
4p,a−1 is

(4(a− 1))j
′ − (2(a− 1))j

′
+ 2−12j

′
(2j

′ − 1)− (2−1(2(a− 1))j
′
(2j

′ − 1))− (4j
′ − 2j

′
)

= 2j
′−1(2j

′ − 1)((a− 1)j
′ − 1).

On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ
(χ0,j′)
4p,a is{

aj
′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + aj

′
a ≡ 0mod 4

(2a)j
′ − aj + 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + (2j

′ − 1)aj
′

a ≡ 2mod 4,

that is, 2j
′−1(1− 2j

′
) + ua+1,j′a

j′ . By (3.2), (3.4) and (3.6), that of ρ
(χ,j)
4p,a−1 is

1− (−1)
a−2
2 (a− 1)j .

Therefore, we obtain the second relation.

4 Proof of Theorem 1.2

Theorem 1.2 is obtained from numerical results under the following conjecture.

Conjecture 4.1. κp,i and κ4p,i (resp. κ4p,χ,i) are nontrivial for all p and i ∈ Ip, (resp. Ip,χ).
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4.1 The p-cyclotomic field

Following computation in [5], we compute up to p < 216 = 65, 536.

Table 2. The distribution of p with rp = r.

r 0 1 2 3 4 ≥ 5

The number of p 3976 1979 497 86 4 0

Under Conjecture 4.1, we obtain the following table.

Table 3. The distribution of (p, i) with zp,i = m.

m 2 3 4 5 6 7 8 9 10

♯(p, i) ≡ (1, 0) mod 4 642 0 155 0 19 0 0 0 0
♯(p, i) ≡ (1, 2) mod 4 0 0 597 0 165 0 19 0 2
♯(p, i) ≡ (3, 0) mod 4 0 636 0 154 0 22 0 0 0
♯(p, i) ≡ (3, 2) mod 4 0 648 0 166 0 20 0 2 0

Put zp,i = ♯{j ∈ 2Jp | ei,j = 0}. First, we note that there are pairs of zeros by anti-symmetry
ei,j = −ei,j′ when j 6= j′. In this paper, “index zeros” mean the pair of zeros which come from
the index i, and “self zeros” mean zeros which come from the relation 〈c, c〉 = 0. The other zeros
are called “nontrivial zeros”. We denote by 2z′p,i the number of “nontrivial zeros” for p and i.
By definition, we have

zp,i = ♯{nontrivial zeros}+ ♯{index zeros}+ ♯{self zeros}.

Since the number of index zeros is 2, we have

zp,i = 2z′p,i + 2 +


0 (p, i) ≡ (1, 0) mod 4
2 (p, i) ≡ (1, 2) mod 4
1 p ≡ 3 mod 4.

The distribution of z′p,i is similar to the Poisson distribution Po(1/4) as follows.

Table 4. The distribution of (p, i) with z′p,i = m.

m 0 1 2 3

The number of (p, i) 2523 640 80 4
ratio 0.77702 0.19711 0.02464 0.00123

Po(1/4) 0.77880 0.19470 0.02434 0.00203

In the following examples, we write the ratio of ei,j/ei,0. There is no pair (p, i) with ei,0 = 0
in p < 216. We add the subscript j to zeros.

Example 4.1.
(1) z101,68 = 4 = 2 + 2 + 0 (nontrivial: 46-88, index: 66-68)
1, 84, 84, 89, 35, 29, 48, 15, 70, 31, 86, 53, 72, 66, 12, 17, 17, 100, 45, 61, 5, 75, 38, 046, 40, 20,
30, 66, 9, 28, 37, 95, 13, 066, 068, 88, 6, 64, 73, 92, 35, 71, 81, 61, 088, 63, 26, 96, 40, 56.
(2) z379,100 = 3 = 0 + 2 + 1 (index: 100-180, self: 140)
1, 97, . . . , 279, 159, 0100, 258, . . . , 168, 0140, 211, 173, . . . , 140, 121, 0180, 220, . . . , 140, 206.
(3) z379,174 = 3 = 0 + 2 + 1 (index: 32-174, self: 292)
1, 310, . . . , 51, 032, 44, 143, . . . , 236, 335, 0174, 328, 270, . . . , 325, 2, 0292, 377, 54, . . . , 91, 63.
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4.2 The 4p-cyclotomic field I

Put z4p,i = ♯{j ∈ Jp \ 2Jp | fi,j = 0}. Under Conjecture 4.1, we obtain the following tables.

Table 5. The distribution of of (p, i) with z4p,i = m.

m 0 1 2 3 4 5 6 7 8

♯(p, i) ≡ (1, 0) mod 4 0 0 617 0 180 0 16 0 3
♯(p, i) ≡ (1, 2) mod 4 612 0 152 0 17 0 2 0 0
♯(p, i) ≡ (3, 0) mod 4 0 620 0 171 0 20 0 1 0
♯(p, i) ≡ (3, 2) mod 4 0 666 0 153 0 16 0 1 0

We can classify zeros into three types of zeros as in the p-cyclotomic case. Then, since the
number of index zeros is 0, z4p,i = ♯{nontrivial zeros}+ ♯{self zeros}:

z4p,i = 2z′4p,i +


2 (p, i) ≡ (1, 0) mod 4
0 (p, i) ≡ (1, 2) mod 4
1 p ≡ 3 mod 4.

The distribution of z′4p,i is also similar to the Poisson distribution Po(1/4) as follows.

Table 6. The distribution of (p, i) with z′4p,i = m.

m 0 1 2 3

The number of (p, i) 2515 656 69 7
ratio 0.77456 0.20203 0.02125 0.00216

Po(1/4) 0.77880 0.19470 0.02434 0.00203

In the following examples, we write the ratio of fi,j/ei,0. We add the subscript j to zeros.

Example 4.2.
(1) z4·379,100 = 3 = 2 + 1 (nontrivial: 317-341, self: 329)
2, 98, . . . , 137, 0317, 212, 13, 262, 310, 227, 0329, 152, 69, 117, 366, 167, 0341, 242, . . . , 45, 5.
(2) z4·379,174 = 3 = 2 + 1 (nontrivial: 267-317, self: 103)
306, 29, . . . , 193, 121, 0103, 258, . . . , 225, 0267, 89, . . . , 347, 290, 0317, 154, 124, . . . , 36, 141.
(3) z4·929,820 = 6 = 4 + 2 (nontrivial: 1-109, 139-899, self: 55, 519)
01, 383, . . . , 68, 055, 861, 670, 750, . . . , 7, 546, 0110, 110, 75, . . . , 69, 394, 0139, 272, 299, . . . ,
804, 829, 104, 461, 0519, 468, 825, . . . , 630, 657, 0899, 535, 860, . . . , 854, 819.

The zeros 0317 in (1) and (2) are very rare, because they come from the nontriviality of
the p-part of the ideal class group of K+. In other words, they come from the nontriviality
of χ−4-part of K4m+2(Z[

√
−1])[p], where p = 379 is the unique prime number satisfying the

nontriviality in p < 20, 000, 000 (cf. [7, 8, 9]).
The zeros 01 in (3) is rare, because there is only one pair (p, i) = (929, 820) satisfying the

condition in p < 216 and i ∈ Ip.

4.3 The 4p-cyclotomic field II

Table 7. The distribution of p with r4p,χ = r.

r 0 1 2 3 4 5 ≥ 6

The number of p 3960 1993 492 80 14 3 0

Put z4p,χ,i = ♯{j ∈ Jp | gi,j = 0}. Under Conjecture 4.1, we obtain the following tables except
for (p, i) =(9511, 2221), (12073, 7547), (13367, 5331), (30241, 19981), (31649, 8903), for which
the relations in Proposition 3.2 is clearly insufficient, because 22−i ≡ 1 or 2mod p (cf. [3, §5]).

10



Table 8. The distribution of of (p, i) with z4p,χ,i = m.

m 0 1 2 3 4 5 6 7 8 9 10

♯(p, i) ≡ (1, 1) mod 4 0 0 478 0 244 0 58 0 16 0 1
♯(p, i) ≡ (1, 3) mod 4 0 0 504 0 235 0 63 0 11 0 1
♯(p, i) ≡ (3, 1) mod 4 0 0 511 0 259 0 64 0 10 0 2
♯(p, i) ≡ (3, 3) mod 4 0 0 520 0 235 0 56 0 13 0 1

Here z4p,χ,i is even, because gi,j = −gi,j′ with j 6≡ j′mod 2. We can classify zeros into three
types of zeros as in the p-cyclotomic case. Then, since the number of self zeros is 0, z4p,χ,i =
♯{nontrivial zeros}+ ♯{index zeros}:

z4p,χ,i = 2z′p,χ,i + 2.

The distribution of z′4p,χ,i is similar to the Poisson distribution Po(1/2) as follows.

Table 9. The distribution of (p, i) with z′4p,χ,i = m.

m 0 1 2 3 4 5

The number of (p, i) 2013 973 241 50 5 1
ratio 0.61316 0.29638 0.07341 0.01523 0.00152 0.00030

Po(1/2) 0.60653 0.30327 0.07582 0.01264 0.00158 0.00016

In the following examples, we write the ratio of gi,j/gi,1 (resp. gi,j/gi,p−2) if gi,1 6= 0
(resp. gi,1 = 0). We add the subscript j to zeros.

Example 4.3.
(1) z4·379,χ,317 = 2 = 0 + 2 (index: 317-317’)
1, 109, . . . , 285, 369, 0317, 331, 119, . . . , 354, 222,
-1, -109, . . . , -285, -369, 0317′ , -331, -119, . . . , -354, -222.
(2) z4·941,χ,687 = 2 = 0 + 2 (nontrivial 1-1’, index: 687-687’)
01, 413, 589, 110, . . . , 257, 437, 0687, 314, 569, 300, 212, . . . , 462, 331, 596, 13, 1,
01′ , -413, -589, -110, . . . , -257, -437, 0687′ , -314, -569, -300, -212, . . . , -462, -331, -596, -13, -1.

The zero 01 in (2) is rare, because there is only one pair (p, i) = (941, 887) satisfying the
condition in p < 216 and i ∈ I4p,χ. There is no zero 0j with j ≡ 2 − imod (p − 1) and
j′ ≡ 0mod (p− 1) in the range.

References

[1] A.A. Cuoco and P. Monsky, Class numbers in Zd
p-extensions, Math. Ann. 255 (1981), 235–

258.

[2] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J.
Math. 95 (1973), 204–214.

[3] W.G. McCallum and R.T. Sharifi, A cup product in the Galois cohomology of number fields.,
Duke Math. 120 (2003), 269–310.

[4] R.T. Sharifi, Iwasawa theory and the Eisenstein ideal, Duke Math. J. 137 (2007), 63–101.

[5] , On Galois groups of unramified pro-p extensions, Math. Ann. 342 (2008), 297–308.
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