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Abstract

We study a pairing of p-units in the 4p-cyclotomic field, following results on the p-
cyclotomic field by McCallum—Sharifi. We discuss the distribution of the number of nontrivial
zeros for each prime number p < 2'6 = 65,536 under a conjecture, which give a sufficient
condition for Greenberg’s generalized conjecture. We also explain rare zeros which do not
appear in the p-cyclotomic field.
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1 Introduction

We first explain the main purpose of the computation, i.e., Greenberg’s generalized conjecture.
Let k be a finite extension of the rational number field Q and p an odd prime number. Let k be
the maximal multiple Z,-extension of k with Gal(k/k) ~ Z2. Leopoldt’s conjecture for k and
p implies that d = ro(k) + 1, where r3(k) is the number of complex places of k. Let k, be the
intermediate field in &/k such that Gal(k, /k) ~ (Z/p"Z)?, A, the p-part of the ideal class group
of k,, and X, = ligl A,,, where the inverse limit is taken with respect to norm maps. Further

let v; (1 < i < d) be the topological generator of Gal(k/k) with (1,72, ..., 7a) ~ Zg. We can
consider Xy as a A = Zy[[T1, Ty, ..., Ty]]-module by the action of T; = ; — 1.

Conjecture 1.1 (Greenberg’s generalized conjecture). For any k and p, Xoo is a pseudo-null
A-module, i.e., ht ;(Ann ;X)) > 2.

Remark 1.1. When d = 1, k is a totally real number field, and k4 is the cyclotomic Z,-
extension. By Iwasawa’s class number formula, we have #4, = p* " for any sufficiently
large n, where A = A\y(kxo/k), pp(kso/k) € Z>o and v = vp(keo/k) € Z are the Iwasawa
invariants. The above conjecture implies that X is finite, i.e., A\p(koo/k) = pp(koo/k) = 0,
which is called Greenberg’s conjecture for the Iwasawa invariants of totally real number fields.

Remark 1.2. For any Zj-extension, it is shown that X is a finitely generated torsion A =
Zp|[Th, T, ..., T;]]-module in [2] under some assumptions, which is known to be unnecessary.
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Hence we have hty(AnnsXs) > 1 in general. Moreover, in [1], it is shown that $A4, =

plnFmp" 0PV g1 any sufficiently large n.

In [3, 4, 5], a sufficient condition for the conjecture is given by using cup products of cyclo-
tomic units of the p-cyclotomic field k = Q({,). Assume that the Kummer-Vandiver conjecture

1+J
holds for p, i.e., A(J)r = %AO is trivial, where J is the complex conjugate. Note that Aar

is isomorphic to the p-part of the ideal class group of the maximal real subfield k™ of k. Put
By, = Ok[1/p]* /(Ok[1/p]*)? and pp = (Gp). By the assumption on AT, Ejy. , is generated by
cyclotomic p-units. We consider the following cup product:

Hl(Gk,p’:U’p) X Hl (Gk,pnu’p) - H2(Gk,pvug2)7

where G}, ;, is the Galois group of the maximal extension of £ unramified outside p. This product
can be represented as the following pairing:

By % By, — (Ag/pAk) © pp.
Let A = Gal(k/Q) ~ (Z/pZ)*, and let w be the Teichmiiller character. Put J, = Z/(p—1)Z. For

: . 1 .
j € Jp, denote by YU) = ¢_;Y the wi-part of Z,[A]-module Y, where e,; = A Z Wl (8)67! €
dEA
Zp|A]. By decompositions, we can define the following pairing:

P {(EL)9 x (BL)E ) = (A/pAn)0=) @ pp
je2J,

WA e

where i € 2J, and ) = [(1—(,)V)] € (E,’W)(j) Put I, = {i € 2J, | Ag_i) # {0}} and r, = t1,.
Theorem 1.1 (Sharifi 4, 5]). For s, =4{j|ei; #0 for any i€ I,},

Sp

In particular, data on (rp,s,) implies Greenberg’s generalized conjecture for p < 1,000.

The procedure to check the conjecture is as follows:
(i) Compute 7, from the generating function of Bernoulli numbers modulo p.

(ii) Check e; 4, # 0 for some iy by computation of an ideal of Hecke ring.
(iii) Compute s, from relations among e; ;’s.
(iv) Apply data on r, and s, to Theorem 1.1.

In [4, 5], (ii) (resp. (iii)) is computed for p < 1,000 (resp.25,000) in the p-cyclotomic field.
A lower bound of s, is obtained by the number of zeros: z,; = #{j € 2J,|e;; = 0} for i € I,.
In this paper, following the computation, we study the distribution of the number of zeros in
the 4p-cyclotomic field under a conjecture.

Theorem 1.2. Let z,;,

defined in §3. For p < 2'6, under Conjecture 4.1 for these prime numbers, the distributions are
given in Table 1:

/ / L . .
Zy,; and zy, , ; be the half number of nontrivial zeros in the pairing

Table 1. The number of (p,i) with 2’ = m.
m 0 1 2 3 4 5
2. 2523 640 80 4 0 0
i | 2515 656 69 T 0 0
s | 2013 973 241 50 5 1




Each distribution is similar to the Poisson distribution Po(1/4) or Po(1/2). We also obtain
rare zeros which do not appear in the p-cyclotomic field.

2 Definition of maps and K>-groups

We recall some definitions and theorems (cf. [3, §3]). The Milnor Kj-group of a commutative
ring R is defined as follows:

KM (R)= (R*®R*)/(a® (1 —a); a, 1 —a € RX).

Let K be a number field with K D p,. In [6], a particular choice of isomorphisms is described
as a Chern class map:

chy : Ka(Ox[1/p])/p = H* (G py b13%)-
By a classical result of Matsumoto, we may identify K2/ (K) with K2(K). The group K2(Ox[1/p)])
may defined via the exact localization sequence:
0 — Ky (Ok[1/p]) = Ko(K) = @ ki =0,
atp

where k; denotes the residue field of K at g. Since two p-units pair trivially under the tame
symbol, the image of
K3 (Ok[1/p]) = K3'(K) = K»(K)

is contained in K3(Ox[1/p]). This yields K3 (Ok[1/p]) — K2(Ox[1/p]) and

Ky, K31 (O [1/p])/p — K2(Ok[1/p])/p.

Here, the map
up : K31 (O [1/p]) /p = H* (G, 15?)

coincides with (—chy) o #,. Further, the natural map

np: Bl % B, = K3 (Ok[1/p]) /p
is surjective. Finally, define the map

. / / 2 ®2
Kp EK,p x EK,p —H (GK:phu’p )v

— _ !/
by kp = up ony = (—chy) o K, 0Ny,

Conjecture 2.1 (McCallum-Sharifi). For all p and k = Q((,) which satisfy the Kummer-

Vandiver conjecture, /11’0 is surjective, i.e., by the A-decomposition,

Kp,i * (E];,p X E]’C,p)(Zfi) N I{2<Gk7p7M?Q)(in)7

is surjective for all i € Jp.



3 Relations of a pairing in the 4p-cyclotomic fields

Put Cip = Calp = V=14, K = Q(Cp) = QW-1,4), k = Q(G) A = Gal(K/Q) and A =
Gal(k/Q) ~ Gal(K/Q(v/—1)). We consider A as the subgroup of A by this isomorphism.

The Dirichlet character group of A is IXwili=0,1, j€ I}, where x = x_4 is the Dirichlet

1+J
character associated to Q(v/—1). Let .J be the complex conjugate in A. We write AT = TA’

A(Xi g = ¢ yiwi A for a Z,[A]-module A, and AY) = e ; A for a Z,[A]-module A, where é Eriwi =

- 1
— Z X'w’(6)6~" € Z,[A]. Note that €y 007 = iem, where (1) = Gal(K/k). We also write
5€A

2
a(X ) and o) for an element of o € A.
Then, we have I, = I4px° = {i € 2J, ]A (1= A(X =) # {0}} and rp = fl4y,,0. Put

Lipy = {i € J,\ 27, | AQT™) £ {0}} and rapy = 814y

Even When p splits in Q(y/—1), the p-part of the subgroup generated by the ideal classes
of prime ideals above p is also trivial in Ax. Hence, as in [3, §2], we have the following exact
sequence:

— (A /pAK) ® pp — HQ(GKP,MSQ) — @up — pp — 0.
vlp

Since (A / pAK)(X’O) is trivial, this sequence implies that
(AK/pAK)(X,l—i) ® fhyp = HZ(GK,p7M§2)(X’2_i)
for any i € Iy ,. We also have
(Ak/pAR)Y ) @ i = H (G, p1*) 7

for any i € I,.

In §3.1 and §3.2, we consider a pairing whose image is contained in (Ag/ pAK)(XO’l_i) ®
T (Ak/pAk)A(l_") ® pp for ¢ € I,. In §3.3, we consider a pairing which are contained in
(Ag /pAg)X1=0) @ pp for i € Iyp .

3.1 The p-cyclotomic field

We fix p and @ € I,, C 2J,. For j € 2J,, put
jJ=2—i—je2J,
In §1-2, we introduce the following pairing:

fna s @D {(EL)D < (B} = (A/pA) ) @,
jE€2Jp

(e, i) =iy =lef)

Proposition 3.1. (cf. [3, §5]) For all even integers a with 4 <a <p—1,

D (l4d —2)1-2")1 - (a—1))e;; = 0.

=

Further, for any j € 2Jp,
€ij + €ij = 0.



3.2 4p-cyclotomic field 1

We fix p and ¢ € I, C 2J,. For j € I, put
F =2
As in §2, we consider the following pairing:

manas @ {(Biep) ) x (B ) |

JEIp\2Jp
o P {(Ek,p)b&j) x (Ek,p)<x°,j’>} — (A /pAr)X" 1) @
J€2Jp
(c%’j), cfé’jl)) = fij = <C$§’j)’ C%’jl)ﬂpvi’
(céj),c(j/)) e = <c§j),6§j/)>4pm

where c(07) = [(1 — ¢4,) 7)) € (E}Qp)(x’j). For a € Z and j € Jp, we define

o 1 a=1mod4
Yai =9\ 921 -1  ¢=3mod4.

Proposition 3.2. For all odd integers a with 3 < a <p—2,

S - ()T )iy

JE€Ip\2Jp

+ Y 2N - 1) - 1) <2j’—1(1 — ) +ugji(a — 1)j'> e = 0.
je2d,

Further, for any j € J, \ 2Jp,
fij+ fijy=0.

3.3 4p-cyclotomic field 11

We fix p and i € Iy, C Jp \ 2J,. For j € Jp, put
j=2—i—3j.

As in §2, we consider the following pairing:

. o0
Fdpxi ° @ {(E}(,p)(xu) > (E}(’p)(x J")

JE€JIp\2Jp
BBl )X x (B )0 L = (A /pAR)®1=) @
) = 7
CRNESD = gy = (e ) g

where ¢U) € (E,’ap)(j/) ~ (E}(yp)(j/).
Proposition 3.3. For all odd integers a with 3 < a <p— 2,
Y {a- (-1 ) (23"—1(1 —9") +ugy(a— 1)j’> G

JET\2Jp ’ ’ ‘
+27 712" —1)(1 — @ )g; ;1 } = 0.



For all even integers a with 4 <a <p—1,

Yo {2 -1 ((a—1)7 - 1)giy
J€JIp\2Jp

+(1 - (—1)%2((1 — 1)]) <2j,_1(1 - 2Jl) + ua_i_l,j/ajl) gi,j’} = 0

Further, for any j € J, \ 2Jp,
9ij + gijy = 0.

3.4 Proofs of propositions

The anti-symmetry relation of each proposition is obtained form the anti-symmetry relation of
K5(K). We prove the other relations by using special cyclotomic units. For n, a € Z>1, we
define the following element of Q((,):

a—1
Pn,a = Z(*Cn)] =1-GC + <7’2L +oe (71)11_1 3_1'
j=0
Then, we have
1—¢@ 1-CYH(1—Cn
1 Cn :( G)( - Gn) a = 0mod 2
o DTG ) TG Lo (3.1)
e 1+¢, L+¢r (-G - a=1mod?2 |
1+¢,  (A-@a-¢@ 7 '
For n = 4p, we have
1_@1110 a=1mod2
1_ 2(1
a __ p =
1-¢§ = (s a =2mod4 (3:2)

1-¢ a = 0mod 4.

Proposition 3.4. (cf. [3, §5]) Forn = p or 4dp, and a € Z with 2 < a < p—1, ppq and
Pna—1 are p-units in K. Further, the image kp([pn.a, Pn,a—1]) is trivial in H2(GK,p,/1§)2), where
[Pn,as Pr,a—1] s the natural class of (pn,as Pra—1) in E}ﬂp X E}(’p.

Proof. Since 1 — (¢, and 1 — (4p, are p-units in K, the first assertion follows immediately from
the above expression. In the following, {x,y} denotes an element in K3/(K)/p. For n = p,
it is easy to see that {1 — (%, ¢} = a {1 = ¢%,¢%} = 0 and {pna,Cn} = 0. For n = 4p, if
a =1mod 2, we have {1 —(%,¢,} = a M1 — (%, ¢} =0. If a =0mod 2, as (4, = (4(,, We also
have {1 — (%, ¢} = {1 — (%, (p} = 0 by the above expression. These imply that {py q,(n} = 0.
Since (npna—1 = Gn — Cy% T+t (—1)“*243*1 =1—pna;

{pn,a; Pn,a—l} = {pn,ay Cn} + {Pn,a: pn,a—l} = {pn,aa 1-— pn,a} =0.
This implies the second assertion. O

Before the proofs of propositions, we give some equalities. For j € Z with (j,4p) = 1, let §;

be an element of Gal(Q((sp)/Q) satisfying (ié = (ip. Let a € Z with 1 < a < p— 1. Then, there
exists @’ € Z such that ' = 1mod4 and a’ = amodp. We have

1+7
Hrew

(1= ¢ = [(1-¢2) 2 i) = [(1— (D] = [((1—G)2) D] = (cP)'Ga) = (D))o (3.3)
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and ‘
(1= ¢ = [1]. (3.4)

Further, if a = 1 mod 2, we have

0 - 147 1— 4a (])% N o
(1= i)™ =11 ¢h) * ] = (1 - Za> = [(c9))? G @) (3-5)
P

and
[(1— Cilp)(x’j)] =[((1 - C4p)6a)(x,j)] — (C(x,j))ij(z?a) — (C(XJ))x(a)aj — (C(x,j))(—l)a?;laj. (3.6)
The first relation of Proposition 3.1. By Proposition 3.4, we have

fa-¢a-6¢) 0-¢“He-¢))
{”pva”’m-l}‘{ ¢ a-gha-@ "

By (3.3), the contribution of pg,{g to the coefficient is
al +1—29,

and that of pg;)_l is

20— +1—(a—1)7" =2 =1 -2)(1 = (a — 1)7).
Therefore, we obtain the first relation.

The first relation of Proposition 3.2. By Proposition 3.4, we have

(LG —Gp) -GG _
1-¢)0-G) 1-¢, |

{pap.as papa—1} = {

By (3.4) and (3.6), the contribution of p%:i) to the coefficient is
1—x(a)a? =1 — (=1)(e=D/2g7,

and that of p%:ilzl is 1. On the other hand, by (3.2), (3.3) and (3.5), the contribution of p%i;j)

1S
(4a)’ — (2a)7 +27127(27 —1) —274(2a)7 (29 — 1) — (47 — 27) = 277127 —1)(a’ — 1),
(AN
and that of pg’f_ )1 is

(a—1)" 427127 (2" —1) - (W' =27y =271 (1-2"Y+(a—1)7 a=1mod 4

(2(a — 1)) — (a—1)7" + 27127 (20" —1) — (47" — 27")
=211 -2+ (2" = 1)(a—1)7 a =3mod 4,

that is, 27'~1(1 — 27") + Ug jr(a — 1)J". Therefore, we obtain the first relation.



The first and second relations of Proposition 3.3. For an odd integer a, by Proposition
3.4, we have

a _ _ ra—1 _
{mp,a,mp,a_l}:{(1—<zp><1 Gp) (1—-¢ha %)}ZQ

(1 7<£(llp)(1 7<Zp)’ 1 7@%})

By (3.4) and (3.6), the contribution of P%zi) to the coefficient is

1—x(a)a? =1 — (=1)(a=1/247

(V)
and that of pz(f;’(f_ )1 is

211 = 27") g jo(a — 1)7
as in Proposition 3.2.

On the other hand, by (3.2), (3.3) and (3.5), the contribution of pféf)a’jl) is

2127~ 1) — 1),

and that of :04(1);:?—1 is 1. Therefore, we obtain the first relation.
For an even integer a, by Proposition 3.4, we have

(- ¢5) (1~ Gap) (1= ")~ Gap) } .

{P4p,aap4p7a*1} = { 1— C42p ’ (1 — CZp_l)(l - CZp)

By (3.4) and (3.6), the contribution of py]gi) to the coefficient is 1, and that of pgj)if_/ )1 is

(4(a— 1)) = (2(a— 1)) +27127(2" = 1) = (27 (2(a — 1)) (27 = 1)) — (47" - 27)
=212 —1)((a — 1)7 —1).

On the other hand, by (3.2), (3.3) and (3.5), the contribution of p(xo’j,) is

4p,a
al' + 2712927 — 1) — (47" — 27") =211 - 2") + o a=0mod 4
(20)" —al 427127 (2" — 1) — (W' —=27) =211 -2")+ (2 —1)a?’ a=2mod 4,

that is, 27'~1(1 — 27") + uaH’j/aj', By (3.2), (3.4) and (3.6), that of p%:i)_l is

1—(—1)7 (a — 1)

Therefore, we obtain the second relation.

4 Proof of Theorem 1.2

Theorem 1.2 is obtained from numerical results under the following conjecture.

Conjecture 4.1. ky; and Kap; (1esp. Kapy,i) are nontrivial for all p and i € I, (resp. I).



4.1 The p-cyclotomic field
Following computation in [5], we compute up to p < 2'6 = 65, 536.
Table 2. The distribution of p with r, = r.

r 0 1 2 3 4 >5
The number of p | 3976 1979 497 8 4 0

Under Conjecture 4.1, we obtain the following table.

Table 3. The distribution of (p, ) with z,; = m.
2 3 4 ) 6 7T 8
0

m 9 10
f(p,i) = (1,0) mod 4 | 642 0 155 19 0 0 0 0
f(p,i)=(1,2) mod4 | 0 0 597 0 165 0 19 0 2
H(p,i)=(3,0) mod4| O 636 0 154 0 22 0 0 O
H(p,i)=(3,2) mod4| O 648 0 166 0O 20 0 2 0

Put z,; = #{j € 2Jp | e;; = 0}. First, we note that there are pairs of zeros by anti-symmetry
€;,j = —e;j» when j # j'. In this paper, “index zeros” mean the pair of zeros which come from
the index 7, and “self zeros” mean zeros which come from the relation (¢, c¢) = 0. The other zeros
are called “nontrivial zeros”. We denote by 22’;/3,1‘ the number of “nontrivial zeros” for p and i.
By definition, we have

zp,i = f{nontrivial zeros} + #§{index zeros} + #{self zeros}.

Since the number of index zeros is 2, we have

0 (p,i)=(1,0) mod4
2pi =22,;+2+14 2 (p,i)=(1,2) mod 4
1 p=3 mod 4.

The distribution of z, ; is similar to the Poisson distribution Po(1/4) as follows.

Table 4. The distribution of (p,7) with 2, ; = m.

m 0 1 2 3
The number of (p,7) | 2523 640 80 4
ratio 0.77702 0.19711 0.02464 0.00123
Po(1/4) 0.77880 0.19470 0.02434 0.00203
In the following examples, we write the ratio of e; ;j/e; 9. There is no pair (p,7) with ;o =0
in p < 216, We add the subscript j to zeros.
Example 4.1.

(1) z101,68 =4 =2+ 2+ 0 (nontrivial: 46-88, index: 66-68)

1, 84, 84, 89, 35, 29, 48, 15, 70, 31, 86, 53, 72, 66, 12, 17, 17, 100, 45, 61, 5, 75, 38, 044, 40, 20,
30, 66, 9, 28, 37, 95, 13, Og¢, Ogg, 88, 6, 64, 73, 92, 35, 71, 81, 61, Ogg, 63, 26, 96, 40, 56.

(2) 2379,100 = 3=04+2+1 (index: 100-180, self: 140)

1,97, ...,279, 159, 0199, 258, ..., 168, 0149, 211, 173, ..., 140, 121, 0159, 220, ..., 140, 206.
(3) 2379,174 = 3=0+2+1 (index: 32-174, self: 292)

1, 310, ..., 51, O39, 44, 143, ..., 236, 335, 0174, 328, 270, ..., 325, 2, 0292, 377, 54, ..., 91, 63.



4.2 The 4p-cyclotomic field I
Put z4p; = #{j € Jp \ 2Jp | fi,; = 0}. Under Conjecture 4.1, we obtain the following tables.

Table 5. The distribution of of (p,i) with z4,,; = m.

m 0o 1 2 3 4 5 6 7 8
f(p,i)=(1,0) mod4 | 0 0 617 0 180 0 16 0 3
H(p,i)=(1,2) mod4 | 612 0 152 0 17 0 2 0 0
H(p,i)=(3,0) mod4| 0 620 0 171 0 20 0 1 0
H(p,i)=(3,2) mod4| 0 666 0 153 0 16 0 1 0

We can classify zeros into three types of zeros as in the p-cyclotomic case. Then, since the
number of index zeros is 0, z4p; = f{nontrivial zeros} + #{self zeros}:

2 (p,i) =(1,0) mod 4
Z4psi = zzﬁlp,i +<¢ 0 (p,i)=(1,2) mod4
1 p=3 mod 4.

The distribution of 2}, ; is also similar to the Poisson distribution Po(1/4) as follows.

Table 6. The distribution of (p,7) with 2}, ; = m.

m 0 1 2 3

The number of (p, i) 2515 656 69 7
ratio 0.77456 0.20203 0.02125 0.00216
Po(1/4) 0.77880 0.19470 0.02434 0.00203

In the following examples, we write the ratio of f; j/e; . We add the subscript j to zeros.

Example 4.2.

(1) z4.379.100 = 3 = 2+ 1 (nontrivial: 317-341, self: 329)

2,08, ..., 137, 0317, 212, 13, 262, 310, 227, 0320, 152, 69, 117, 366, 167, 0341, 242, ..., 45, 5.
(2) za.379.174 = 3 = 2+ 1 (nontrivial: 267-317, self: 103)

306, 29, ..., 193, 121, 0103, 258, ..., 225, Ogg7, 89, ..., 347, 290, 0317, 154, 124, ..., 36, 141.
(3) z4.929.820 = 6 = 4 + 2 (nontrivial: 1-109, 139-899, self: 55, 519)

01, 383, ..., 68, Os5, 861, 670, 750, ..., 7, 546, 0110, 110, 75, ..., 69, 394, O139, 272, 299, . ...
804, 829, 104, 461, 0519, 468, 825, ..., 630, 657, Oggg, 535, 860, ..., 854, 819.

The zeros 0317 in (1) and (2) are very rare, because they come from the nontriviality of
the p-part of the ideal class group of K*. In other words, they come from the nontriviality
of x_g-part of Kymi2(Z[v/—1])[p], where p = 379 is the unique prime number satisfying the
nontriviality in p < 20,000,000 (cf. 7, 8, 9]).

The zeros 07 in (3) is rare, because there is only one pair (p,i) = (929, 820) satisfying the
condition in p < 26 and i € I,

4.3 The 4p-cyclotomic field 11
Table 7. The distribution of p with r4p, = 7.
r 0 1 2 3 4 5 >6
The number of p | 3960 1993 492 80 14 3 0

Put z4p i = #{j € Jp|gi; = 0}. Under Conjecture 4.1, we obtain the following tables except
for (p,i) =(9511, 2221), (12073, 7547), (13367, 5331), (30241, 19981), (31649, 8903), for which
the relations in Proposition 3.2 is clearly insufficient, because 227" = 1 or 2mod p (cf. [3, §5]).
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Table 8. The distribution of of (p, ) with 24y, = m.

m 01 2 3 4 5 6 7 8 9 10
f(p,i) =(1,1) mod4 |0 0O 478 0 244 0 58 0 16 0 1
f(p,71) =(1,3) mod4 |0 0 504 0 235 0 63 0 11 0O 1
f(p,i) =(3,1) mod4 |0 0O 511 0 259 0 64 0 10 0O 2
f(p,i) =(3,3) mod4 |0 0O 520 0 235 0 56 0 13 0 1
Here 24y, is even, because g; j = —g; j» with j # j'mod2. We can classify zeros into three

types of zeros as in the p-cyclotomic case. Then, since the number of self zeros is 0, z4p ;i =
f#{nontrivial zeros} + #{index zeros}:

’
Zdp,x,i = 2z + 2.

DX,

The distribution of 2}, , ; is similar to the Poisson distribution Po(1/2) as follows.

Table 9. The distribution of (p,7) with 2}, ;= m.

m 0 1 2 3 4 5

The number of (p, 7) 2013 973 241 50 5 1
ratio 0.61316 0.29638 0.07341 0.01523 0.00152 0.00030
Po(1/2) 0.60653 0.30327 0.07582 0.01264 0.00158 0.00016

In the following examples, we write the ratio of g;;/gi1 (resp. ¢ij/gip—2) if gi1 # 0
(resp. gi1 = 0). We add the subscript j to zeros.

Example 4.3.

(1) 24.379,x,317 = 2=0+2 (index: 317-317’)

1, 109, ..., 285, 369, 0317, 331, 119, ..., 354, 222,

-1, -109, ..., -285, -369, 0317/, -331, -119, ..., -354, -222.

(2) Z4.941,x,687 = 2=0+4+2 (nontrivial 1-1’, index: 687—6877)

01, 413, 589, 110, ..., 257, 437, Ogsr, 314, 569, 300, 212, ..., 462, 331, 596, 13, 1,

0y, -413, -589, -110, ..., -257, -437, Ogs7, -314, -569, -300, -212, ..., -462, -331, -596, -13, -1.

The zero 0; in (2) is rare, because there is only one pair (p,i) = (941, 887) satisfying the
condition in p < 2! and i € Iy,,. There is no zero 0; with j = 2 —imod (p — 1) and
j'=0mod (p — 1) in the range.
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