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Abstract

We study pairings of p-units in the 4p-cyclotomic field, following results on the p-cyclotomic
field by McCallum–Sharifi. We compute zeros of the parings for each prime number p < 216 =
65, 536, which give a sufficient condition for Greenberg’s generalized conjecture. We also ex-
plain rare zeros which do not appear in the p-cyclotomic field.
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1 Introduction

We first explain the main purpose of the computation, i.e., Greenberg’s generalized conjecture.
Let k be a finite extension of the rational number field Q and p an odd prime number. Let k̃ be
the maximal multiple Zp-extension of k with Gal(k̃/k) ' Zd

p. Leopoldt’s conjecture for k and p
implies that d = r2(k) + 1, where r2(k) is the number of complex places of k. This conjecture
holds for abelian extensions of Q (cf. [1, 2]). Let kn be the intermediate field in k̃/k such that
Gal(kn/k) ' (Z/pnZ)d, An the p-part of the ideal class group of kn, and X∞ = X∞(k) = lim

←
An,

where the inverse limit is taken with respect to norm maps. Further let γi (1 ≤ i ≤ d) be
the topological generator of Gal(k̃/k) with 〈γ1, γ2, ..., γd〉 ' Zd

p. We can consider X∞ as a

Λ̃ = Zp[[T1, T2, ..., Td]]-module by the action of Ti = γi − 1.

Conjecture 1.1 (Greenberg’s generalized conjecture). For any k and p, X∞ is a pseudo-null
Λ̃-module, i.e., htΛ̃(AnnΛ̃X∞) ≥ 2.

Remark 1.1. When d = 1, k is a totally real number field. If we assume Leopoldt’s conjecture
for k and p, k̃ is the cyclotomic Zp-extension kcyc. By Iwasawa’s class number formula, we
have ♯An = pλn+µpn+ν for any sufficiently large n, where λ = λp(kcyc/k), µp(kcyc/k) ∈ Z≥0 and
ν = νp(kcyc/k) ∈ Z are the Iwasawa invariants. Greenberg’s generalized conjecture implies that
X∞ is finite, i.e., λp(kcyc/k) = µp(kcyc/k) = 0, which is called Greenberg’s conjecture for the
Iwasawa invariants of totally real number fields.

Remark 1.2. For any Zr
p-extension, it is shown that X∞ is a finitely generated torsion Λ =

Zp[[T1, T2, ..., Tr]]-module in [6] under some assumptions, which are known to be unnecessary
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(cf. [9, p.232]). Hence we have htΛ(AnnΛX∞) ≥ 1 in general. Moreover, in [4], it is shown that

♯An = p(ln+mpn+O(1))p(r−1)n
for any sufficiently large n.

In [8, 11, 12], a sufficient condition for the conjecture is given by using cup products of cyclo-
tomic units of the p-cyclotomic field k = Q(ζp). Assume that the Kummer-Vandiver conjecture
holds for p, i.e., the p-part of the ideal class group of the maximal real subfield k+ of k is trivial.
Put E′k,p = Ok[1/p]

×/(Ok[1/p]
×)p and µp = 〈ζp〉. By the assumption on the Kummer-Vandiver

conjecture, E′k,p is generated by cyclotomic p-units. We consider the following cup product:

H1(Gk,p, µp)×H1(Gk,p, µp) → H2(Gk,p, µ
⊗2
p ),

where Gk,p is the Galois group of the maximal extension of k unramified outside p. This product
induces a pairing:

E′k,p × E′k,p → (Ak/pAk)⊗ µp.

Let ∆ = Gal(k/Q) ' (Z/pZ)×, and let ω be the Teichmüller character. Put Jp = Z/(p − 1)Z.

For j ∈ Jp, put eωj =
1

♯∆

∑
δ∈∆

ωj(δ)δ−1 ∈ Zp[∆], and denote by Y (j) = eωjY the ωj-part of

Zp[∆]-module Y . By decompositions, we can define the following pairing:⊕
j∈2Jp

{
(E′k,p)

(j) × (E′k,p)
(2−i−j)

}
→ (Ak/pAk)

(1−i) ⊗ µp

(c
(j)
p , c

(2−i−j)
p ) 7→ ei,j = 〈c(j)p , c

(2−i−j)
p 〉i,

where i ∈ 2Jp, c
(j) = [(1− ζp)

ωj
] ∈ (E′k,p)

(j). We denote by [ε] its class modulo pth power. Put

Ip = {i ∈ 2Jp |A(1−i)
k 6= {0}},

Zp,i = {j ∈ 2Jp | ei,j = 0}, Sp = 2Jp \
∪
i∈Ip

Zp,i,

rp = ♯Ip, zp,i = ♯Zp,i, and sp = ♯Sp.

Theorem 1.1 (Sharifi [11, 12]). Assume that A
(j)
k is trivial for any j ∈ 2Jp. The height of

AnnΛ̃X∞ in Λ̃ is one more than the maximal number of disjoint translates j + Ip with j ∈ Sp,
and

htΛ̃(AnnΛ̃X∞) ≥ sp
r2p − rp + 1

+ 1.

In particular, Greenberg’s generalized conjecture holds for k and p < 1, 000.

The procedure to get a lower bound of the height is as follows:
(i) Compute Ip from the generating function of Bernoulli numbers modulo p.
(ii) Check ei,i0 6= 0 for some i0 by computation of an ideal of Hecke ring.
(iii) Compute Sp from relations among ei,j ’s.
(iv) Apply data on Ip and Sp to Theorem 1.1. If Sp is not empty, Greenberg’s generalized
conjecture holds for Q(ζp) and p.

In [11, 12], (ii) (resp. (iii)) is done for p < 1, 000 (resp. 25, 000) in the p-cyclotomic field. In [5],
Fukaya and Kato show that (ii) holds if the p-adic L-functions of the even characters of Gal(k/Q)
do not have any multiple zeros. Since the condition is checked for p < 231 = 2, 147, 483, 648
(cf. [7]), Greenberg’s generalized conjecture holds for Q(ζp) and p < 25, 000.

There are indices j with ei,j = 0 which can be easily calculated from i and p. We call
these zeros trivial, and the other zeros nontrivial. In this paper, we similarly study trivial and
nontrivial zeros of parings of p-units in the 4p-cyclotomic field. For details, see §3 and §4.
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Theorem 1.2. Let z′p,i, z
′
4p,i and z′4p,χ,i be the half number of nontrivial zeros in the pairings.

For p < 216 = 65, 536, the distributions are given in Table 1:

Table 1. The number of (p, i) with z′ = m.
m 0 1 2 3 4 5 ?

z′p,i 2523 640 80 4 0 0 0

z′4p,i 2515 656 69 7 0 0 0

z′4p,χ,i 2013 973 241 50 5 1 5

Recall that a discrete random variable X has the Poisson distribution Po(λ) if the probability
mass function of X is given by Pr(X = k) = λke−λ/k! for k ∈ Z≥0. Each distribution in Table
1 is similar to the Poisson distribution Po(1/4) or Po(1/2). We also obtain rare zeros which do
not appear in the p-cyclotomic field. From the data on zeros, we obtain the following theorem.

Theorem 1.3. Greenberg’s generalized conjecture holds for Q(ζp) and p < 216 = 65, 536. Fur-
ther, the conjecture holds for Q(ζ4p) and p < 216 with p ≡ 3 mod 4 except for p = 379, 9511 and
13367.

2 Definition of maps and K2-groups

We recall some definitions and theorems (cf. [8, §3]). The Milnor K2-group of a commutative
ring R is defined as follows:

KM
2 (R) = (R× ⊗R×)/〈a⊗ (1− a); a, 1− a ∈ R×〉.

Let K be a number field with K ⊃ µp. In [14], a particular choice of isomorphisms is described
as a Chern class map:

chp : K2(OK [1/p])/p →̃H2(GK,p, µ
⊗2
p ).

By a classical result of Matsumoto, we may identifyKM
2 (K) withK2(K). The groupK2(OK [1/p])

may defined via the exact localization sequence:

0 → K2(OK [1/p]) → K2(K) →
⊕
q∤p

k×q → 0,

where kq denotes the residue field of K at q. Since two p-units pair trivially under the tame
symbol, the image of

KM
2 (OK [1/p]) → KM

2 (K) = K2(K)

is contained in K2(OK [1/p]). This yields KM
2 (OK [1/p]) → K2(OK [1/p]) and

κ′p : K
M
2 (OK [1/p])/p → K2(OK [1/p])/p.

Here, the map
up : K

M
2 (OK [1/p])/p → H2(GK,p, µ

⊗2
p )

coincides with (−chp) ◦ κ′p. Put E′K,p = OK [1/p]×/(OK [1/p]×)p. Further, the natural map

np : E′K,p × E′K,p → KM
2 (OK [1/p])/p

is surjective. Finally, define the map

κp : E′K,p × E′K,p → H2(GK,p, µ
⊗2
p ),

by κp = up ◦ np = (−chp) ◦ κ′p ◦ np.

Conjecture 2.1 (McCallum-Sharifi). For all p and k = Q(ζp), κ′p is surjective, i.e., by the
∆-decomposition,

κp,i : (E′k,p × E′k,p)
(2−i) → H2(Gk,p, µ

⊗2
p )(2−i),

is surjective for all i ∈ 2Jp.
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3 Relations of a pairing in the 4p-cyclotomic fields

Put ζ4p = ζ4ζp =
√
−1ζp, K = Q(ζ4p) = Q(

√
−1, ζp), k = Q(ζp) ∆̃ = Gal(K/Q) and ∆ =

Gal(k/Q) ' Gal(K/Q(
√
−1)). We consider ∆ as the subgroup of ∆̃ by this isomorphism. The

Dirichlet character group of ∆̃ is {χiωj | i = 0, 1, j ∈ Ip}, where χ = χ−4 is the Dirichlet

character associated to Q(
√
−1). Put ẽχiωj =

1

♯∆̃

∑
δ∈∆̃

χiωj(δ)δ−1 ∈ Zp[∆̃]. We write A(χi,j) =

ẽχiωjA for a Zp[∆̃]-module A, and A(j) = eωjA for a Zp[∆]-module A. Note that ẽχ0ωj = 1+τ
2 eωj ,

where 〈τ〉 = Gal(K/k). We similarly write α(χi,j) and α(j) for an element α ∈ A.

Then, we have Ip = I4p,χ0 = {i ∈ 2Jp |A(1−i)
k ' A

(χ0,1−i)
K 6= {0}} and rp = ♯I4p,χ0 . Put

I4p,χ = {i ∈ Jp \ 2Jp |A(χ,1−i)
K 6= {0}} and r4p,χ = ♯I4p,χ.

Even when p splits in Q(
√
−1), the p-part of the subgroup generated by the ideal classes

of prime ideals above p is also trivial in AK . Hence, as in [8, §2], we have the following exact
sequence:

0 → (AK/pAK)⊗ µp → H2(GK,p, µ
⊗2
p ) →

⊕
v|p

µp → µp → 0.

Since (AK/pAK)(χ,0) is trivial, this sequence implies that

(AK/pAK)(χ,1−i) ⊗ µp ' H2(GK,p, µ
⊗2
p )(χ,2−i)

for any i ∈ I4p,χ. We also have

(Ak/pAk)
(1−i) ⊗ µp ' H2(Gk,p, µ

⊗2
p )(2−i)

for any i ∈ Ip.

In §3.1 and §3.2, we consider a pairing whose image is contained in (AK/pAK)(χ
0,1−i) ⊗

µp ' (Ak/pAk)
(1−i) ⊗ µp for i ∈ Ip. In §3.3, we consider a pairing which are contained in

(AK/pAK)(χ,1−i) ⊗ µp for i ∈ I4p,χ.

3.1 The p-cyclotomic field

We fix p and i ∈ Ip ⊂ 2Jp. For j ∈ 2Jp, put

j′ = 2− i− j ∈ 2Jp.

In §1–2, we introduced the following pairing:

κp,i :
⊕
j∈2Jp

{
(E′k,p)

(j) × (E′k,p)
(j′)
}

→ (Ak/pAk)
(1−i) ⊗ µp

(c
(j)
p , c

(j′)
p ) 7→ ei,j = 〈c(j)p , c

(j′)
p 〉i.

Proposition 3.1. (cf. [8, §5]) For all even integers a with 4 ≤ a ≤ p− 1,∑
j∈2Jp

(1 + aj − 2j)(1− 2j
′
)(1− (a− 1)j

′
)ei,j = 0.

Further, for any j ∈ 2Jp,
ei,j + ei,j′ = 0.
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3.2 4p-cyclotomic field I

We fix p and i ∈ Ip ⊂ 2Jp. For j ∈ Ip, put

j′ = 2− i− j.

As in §2, we consider the following pairing:

κ4p,i :
⊕

j∈Jp\2Jp

{
(E′K,p)

(χ,j) × (E′K,p)
(χ,j′)

}
⊕
⊕
j∈2Jp

{
(E′K,p)

(χ0,j) × (E′K,p)
(χ0,j′)

}
→ (AK/pAK)(χ

0,1−i) ⊗ µp

(c
(χ,j)
4p , c

(χ,j′)
4p ) 7→ fi,j = 〈c(χ,j)4p , c

(χ,j′)
4p 〉4p,i,

(c
(j)
p , c

(j′)
p ) 7→ ei,j = 〈c(j)p , c

(j′)
p 〉4p,i,

where c(χ,j) = [(1− ζ4p)
(χ,j)] ∈ (E′K,p)

(χ,j). For a ∈ Z and j ∈ Jp, we define

ua,j =

{
1 a ≡ 1mod 4
2j − 1 a ≡ 3mod 4.

Proposition 3.2. For all odd integers a with 3 ≤ a ≤ p− 2,∑
j∈Jp\2Jp

(1− (−1)
a−1
2 aj)fi,j

+
∑
j∈2Jp

2j−1(2j − 1)(aj − 1)
(
2j

′−1(1− 2j
′
) + ua,j′(a− 1)j

′
)
ei,j = 0.

Further, for any j ∈ Jp \ 2Jp,
fi,j + fi,j′ = 0.

3.3 4p-cyclotomic field II

We fix p and i ∈ I4p,χ ⊂ Jp \ 2Jp. For j ∈ Jp, put

j′ = 2− i− j.

As in §2, we consider the following pairing:

κ4p,χ,i :
⊕

j∈Jp\2Jp

{
(E′K,p)

(χ,j) × (E′K,p)
(χ0,j′)

⊕(E′K,p)
(χ0,j′) × (E′K,p)

(χ,j)
}

→ (AK/pAK)(χ,1−i) ⊗ µp

(c
(χ,j)
4p , c

(j′)
p ) 7→ gi,j = 〈c(χ,j)4p , c

(j′)
p 〉4p,χ,i

(c
(j′)
p , c

(χ,j)
4p ) 7→ gi,j′ = 〈c(j

′)
p , c

(χ,j)
4p 〉4p,χ,i,

where c(j
′) ∈ (E′k,p)

(j′) ' (E′K,p)
(j′).

Proposition 3.3. For all odd integers a with 3 ≤ a ≤ p− 2,∑
j∈Jp\2Jp

{(1− (−1)
a−1
2 aj)

(
2j

′−1(1− 2j
′
) + ua,j′(a− 1)j

′
)
gi,j

+2j
′−1(2j

′ − 1)(1− aj
′
)gi,j′} = 0.
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For all even integers a with 4 ≤ a ≤ p− 1,∑
j∈Jp\2Jp

{2j′−1(2j′ − 1) ((a− 1)j
′ − 1)gi,j

+(1− (−1)
a−2
2 (a− 1)j)

(
2j

′−1(1− 2j
′
) + ua+1,j′a

j′
)
gi,j′} = 0.

Further, for any j ∈ Jp \ 2Jp,
gi,j + gi,j′ = 0.

3.4 Proofs of propositions

The anti-symmetry relation of each proposition is obtained form the anti-symmetry relation of
K2(K). We prove the other relations by using special cyclotomic units. For n, a ∈ Z≥1, we
define the following element of Q(ζn):

ρn,a =

a−1∑
j=0

(−ζn)
j = 1− ζn + ζ2n + · · ·+ (−1)a−1ζa−1n .

Then, we have

ρn,a =
1 + (−1)a−1ζan

1 + ζn
=


1− ζan
1 + ζn

=
(1− ζan)(1− ζn)

1− ζ2n
a ≡ 0mod 2

1 + ζan
1 + ζn

=
(1− ζ2an )(1− ζn)

(1− ζan)(1− ζ2n)
a ≡ 1mod 2.

(3.1)

For n = 4p, we have

1− ζa4p =


1− ζa4p a ≡ 1mod 2

1− ζ2ap
1− ζap

a ≡ 2mod 4

1− ζap a ≡ 0mod 4.

(3.2)

As in §1, we denote by [ε] its class modulo pth power.

Proposition 3.4. (cf. [8, §5]) For n = p or 4p, and a ∈ Z with 2 ≤ a ≤ p− 1, ρn,a and ρn,a−1
are p-units in K. Further, the image κp([ρn,a], [ρn,a−1]) is trivial in H2(GK,p, µ

⊗2
p ).

Proof. Note that a 6≡ 0, 1 mod p. Since 1 − ζp and 1 − ζ4p are p-units in K, the first assertion
follows immediately from (3.2). In the following, {x, y} denotes an element in KM

2 (K)/p. For
n = p, it is easy to see that {1− ζan, ζn} = a−1{1− ζan, ζ

a
n} = 0 and {ρn,a, ζn} = 0. For n = 4p, if

a ≡ 1mod 2, we have {1− ζan, ζn} = a−1{1− ζan, ζ
a
n} = 0. If a ≡ 0mod 2, as ζ4p = ζ4ζp, we also

have {1 − ζan, ζn} = {1 − ζan, ζp} = 0 by the above expression. These imply that {ρn,a, ζn} = 0.
Since ζnρn,a−1 = ζn − ζ2n + · · ·+ (−1)a−2ζa−1n = 1− ρn,a,

{ρn,a, ρn,a−1} = {ρn,a, ζn}+ {ρn,a, ρn,a−1} = {ρn,a, 1− ρn,a} = 0.

This implies the second assertion.

Before the proofs of propositions, we give some equalities. For j ∈ Z with (j, 4p) = 1, let δj

be an element of Gal(Q(ζ4p)/Q) satisfying ζ
δj
4p = ζj4p. Let a ∈ Z with 1 ≤ a ≤ p− 1. We have

[(1− ζap )
(χ0,j)] = [(1− ζap )

1+τ
2

eωj ] = [(1− ζap )
(j)] = [((1− ζp)

δa)(j)] = (c(j))ω
j(δa) = (c(j))a

j
(3.3)
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and
[(1− ζap )

(χ,j)] = [1]. (3.4)

Further, if a ≡ 1 mod 2, we have

[(1− ζa4p)
(χ0,j)] = [(1− ζa4p)

1+τ
2

eωj ] =

(1− ζ4ap
1− ζ2ap

)(j) 1
2

 = [(c(j))2
−1(2a)j(2j−1)] (3.5)

and

[(1− ζa4p)
(χ,j)] = [((1− ζ4p)

δa)(χ,j)] = (c(χ,j))χω
j(δa) = (c(χ,j))χ(a)a

j
= (c(χ,j))(−1)

a−1
2 aj . (3.6)

The first relation of Proposition 3.1. By Proposition 3.4, we have

{ρp,a, ρp,a−1} =

{
(1− ζap )(1− ζp)

1− ζ2p
,
(1− ζ

2(a−1)
p )(1− ζp)

(1− ζa−1p )(1− ζ2p )

}
= 0.

By (3.3), the contribution of ρ
(j)
p,a to the coefficient is

aj + 1− 2j ,

and that of ρ
(j′)
p,a−1 is

(2(a− 1))j
′
+ 1− (a− 1)j

′ − 2j
′
= (1− 2j

′
)(1− (a− 1)j

′
).

Therefore, we obtain the first relation.

The first relation of Proposition 3.2. By Proposition 3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζ2a4p )(1− ζ4p)

(1− ζa4p)(1− ζ24p)
,
(1− ζa−14p )(1− ζ4p)

1− ζ24p

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is

1− χ(a)aj = 1− (−1)(a−1)/2aj ,

and that of ρ
(χ,j′)
4p,a−1 is 1. On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ

(χ0,j)
4p,a

is

(4a)j − (2a)j + 2−12j(2j − 1)− 2−1(2a)j(2j − 1)− (4j − 2j) = 2j−1(2j − 1)(aj − 1),

and that of ρ
(χ0,j′)
4p,a−1 is

(a− 1)j
′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + (a− 1)j

′
a ≡ 1mod 4

(2(a− 1))j
′ − (a− 1)j

′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
)

= 2j
′−1(1− 2j

′
) + (2j

′ − 1)(a− 1)j
′

a ≡ 3mod 4,

that is, 2j
′−1(1− 2j

′
) + ua,j′(a− 1)j

′
. Therefore, we obtain the first relation.
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The first and second relations of Proposition 3.3. For an odd integer a, by Proposition
3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζ2a4p )(1− ζ4p)

(1− ζa4p)(1− ζ24p)
,
(1− ζa−14p )(1− ζ4p)

1− ζ24p

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is

1− χ(a)aj = 1− (−1)(a−1)/2aj ,

and that of ρ
(χ0,j′)
4p,a−1 is

2j
′−1(1− 2j

′
) + ua,j′(a− 1)j

′

as in Proposition 3.2.

On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ
(χ0,j′)
4p,a is

2j
′−1(2j

′ − 1)(aj
′ − 1),

and that of ρ
(χ,j)
4p,a−1 is 1. Therefore, we obtain the first relation.

For an even integer a, by Proposition 3.4, we have

{ρ4p,a, ρ4p,a−1} =

{
(1− ζa4p)(1− ζ4p)

1− ζ24p
,
(1− ζ

2(a−1)
4p )(1− ζ4p)

(1− ζa−14p )(1− ζ24p)

}
= 0.

By (3.4) and (3.6), the contribution of ρ
(χ,j)
4p,a to the coefficient is 1, and that of ρ

(χ0,j′)
4p,a−1 is

(4(a− 1))j
′ − (2(a− 1))j

′
+ 2−12j

′
(2j

′ − 1)− (2−1(2(a− 1))j
′
(2j

′ − 1))− (4j
′ − 2j

′
)

= 2j
′−1(2j

′ − 1)((a− 1)j
′ − 1).

On the other hand, by (3.2), (3.3) and (3.5), the contribution of ρ
(χ0,j′)
4p,a is{

aj
′
+ 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + aj

′
a ≡ 0mod 4

(2a)j
′ − aj + 2−12j

′
(2j

′ − 1)− (4j
′ − 2j

′
) = 2j

′−1(1− 2j
′
) + (2j

′ − 1)aj
′

a ≡ 2mod 4,

that is, 2j
′−1(1− 2j

′
) + ua+1,j′a

j′ . By (3.2), (3.4) and (3.6), that of ρ
(χ,j)
4p,a−1 is

1− (−1)
a−2
2 (a− 1)j .

Therefore, we obtain the second relation.

4 Proof of Theorems 1.2 and 1.3

First, by [5] and numerical results on Iwasawa invariants in [17], the following conjecture (a
special version of Conjecture 4.3.5(ii) in [13]) holds for p < 20, 000, 000.

Conjecture 4.1. κp,i and κ4p,i (resp. κ4p,χ,i) are nontrivial maps for all p and i ∈ Ip, (resp. I4p,χ).

Next, put
I4p = Ip ∪ I4p,χ ⊂ Jp,

S4p,even = {j ∈ 2Jp | ei,j 6= 0 for any i ∈ Ip and gi,j′ 6= 0 for any i ∈ I4p,χ},
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S4p,odd = {j ∈ Jp \ 2Jp | fi,j 6= 0 for any i ∈ Ip and gi,j 6= 0 for any i ∈ I4p,χ},
S4p = S4p,even ∪ S4p,odd,

r4p = ♯I4p and s4p = ♯S4p. Since there are only one prime ideal above p in K when p ≡ 3 mod 4,
we can show the following theorem for K = Q(ζ4p) by the argument of the proof of Theorem
1.1.

Theorem 4.1. Assume that A
(j)
k is trivial for any j ∈ 2Jp and that A

(χ,j)
K is trivial for any

j ∈ Jp \ 2Jp. When p ≡ 3 mod 4, the height of AnnΛ̃X∞(K) in Λ̃ = Λ̃(K) is one more than the
maximal number of disjoint translates j + I4p with j ∈ S4p, and

htΛ̃(AnnΛ̃X∞(K)) ≥ s4p
r24p − r4p + 1

+ 1.

Proof. We outline the proof for readers’ convenience (for details, see the proof of [12, Theorem
4.2 and Corollary 4.3]). For an algebraic extension F over Q, let XF be the Galois group of
the maximal unramified abelian p-extension over F , and YF the Galois group of the maximal
unramified abelian p-extension in which every prime above p in F splits completely over F .

Let j1, j2, . . . , jd ∈ Jp be such that the translates js + I4p are all disjoint as s runs over
1 ≤ s ≤ d. Let Ls denote the unique Zp-extension of Kcyc Galois over Q and abelian over K

that contains a pth root of c
(js)
p (resp. c

(χ,js)
4p ) for js ∈ 2Jp (resp. Jp \ 2Jp). Let Ms = L1L2 · · ·Ls

for 1 ≤ s ≤ d and set M0 = Kcyc. Suppose by induction on d that YMd−1
' XKcyc . Put

G = Gal(Md/Kcyc). H = Gal(Md/Md−1) and T = Gal(Md/Ld). By the assumption jd ∈ S4p,
we can show that

YLd
' XKcyc

(see [12, Proposition 3.3]). Since there is only one prime in Md over p which is totally ramified
in Md/K, we have

(YMd
)T ' YLd

,

where (YMd
)T is the T -coinvariant quotient of YMd

. From this, we can show that

ITYMd
⊆ IHYMd

,

where IT (resp. IH) is the augmentation ideal for T (resp. H) in Zp[[G]]. Consider for N = H
and N = T the natural surjective Zp[∆̃]-homomorphism

πN : XKcyc ⊗Zp N → (INYMd
)G,

with
πN (x⊗ σ) = (σ − 1)x̃ mod IGINYMd

,

where x̃ ∈ YMd
restricts to x. Since the Zp[∆̃]-eigenspaces of XKcyc ⊗Zp N are nontrivial outside

of those of the character ω2−i−jt or χω2−i−jt with i ∈ I4p and 1 ≤ t ≤ d− 1 if N = T and t = d
if N = H, we have that (INYMd

)G is also nontrivial at most in these eigenspaces. Since the
jt + I4p are all disjoint, the canonical map

(ITYMd
)G → (IHYMd

)G

is zero. From this, we can show (IHYMd
)G = 0, that is,

YMd
' (YMd

)H ' YMd−1
' XKcyc .

Since there exists only one prime over p in Md, the kernel of XMd
→ YMd

is a quotient of Zp,
so XMd

is finitely generated over Zp. By [12, Corollary 2.3], the annihilator of XK̃ has height

at least d + 1 as a Λ̃(K)-module. The inequality can be obtained in a similar way to that in
Theorem 1.1.

By these results, the following numerical data imply Theorems 1.2 and 1.3.
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4.1 The p-cyclotomic field

Following computation in [12], we compute up to p < 216 = 65, 536.

Table 2. The distribution of p with rp = r.

r 0 1 2 3 4 ≥ 5

The number of p 3976 1979 497 86 4 0

We obtain the following table.

Table 3. The distribution of (p, i) with zp,i = m.

m 2 3 4 5 6 7 8 9 10

♯(p, i) ≡ (1, 0) mod 4 642 0 155 0 19 0 0 0 0
♯(p, i) ≡ (1, 2) mod 4 0 0 597 0 165 0 19 0 2
♯(p, i) ≡ (3, 0) mod 4 0 636 0 154 0 22 0 0 0
♯(p, i) ≡ (3, 2) mod 4 0 648 0 166 0 20 0 2 0

Put zp,i = ♯{j ∈ 2Jp | ei,j = 0}. First, we note that there are pairs of zeros by anti-symmetry
ei,j = −ei,j′ when j 6= j′. In this paper, “index zeros” mean the pair of zeros which come from
the index i, and “self zeros” mean zeros which come from the relation 〈c, c〉 = 0. The other zeros
are called “nontrivial zeros”. We denote by 2z′p,i the number of “nontrivial zeros” for p and i.
By definition, we have

zp,i = ♯{nontrivial zeros}+ ♯{index zeros}+ ♯{self zeros}.

Since the number of index zeros is 2, we have

zp,i = 2z′p,i + 2 +


0 (p, i) ≡ (1, 0) mod 4
2 (p, i) ≡ (1, 2) mod 4
1 p ≡ 3 mod 4.

The distribution of z′p,i is similar to the Poisson distribution Po(1/4) as follows.

Table 4. The distribution of (p, i) with z′p,i = m.

m 0 1 2 3

The number of (p, i) 2523 640 80 4
ratio 0.77702 0.19711 0.02464 0.00123

Po(1/4) 0.77880 0.19470 0.02434 0.00203

In the following examples, we write the ratio of ei,j to ei,0. There is no pair (p, i) with ei,0 = 0
in p < 216. We add the subscript j to zeros.

Example 4.1.
(1) z101,68 = 4 = 2 + 2 + 0 (nontrivial: 46-88, index: 66-68)
1, 84, 84, 89, 35, 29, 48, 15, 70, 31, 86, 53, 72, 66, 12, 17, 17, 100, 45, 61, 5, 75, 38, 046, 40, 20,
30, 66, 9, 28, 37, 95, 13, 066, 068, 88, 6, 64, 73, 92, 35, 71, 81, 61, 088, 63, 26, 96, 40, 56.
(2) z379,100 = 3 = 0 + 2 + 1 (index: 100-180, self: 140)
1, 97, . . . , 279, 159, 0100, 258, . . . , 168, 0140, 211, 173, . . . , 140, 121, 0180, 220, . . . , 140, 206.
(3) z379,174 = 3 = 0 + 2 + 1 (index: 32-174, self: 292)
1, 310, . . . , 51, 032, 44, 143, . . . , 236, 335, 0174, 328, 270, . . . , 325, 2, 0292, 377, 54, . . . , 91, 63.

10



4.2 The 4p-cyclotomic field I

Put z4p,i = ♯{j ∈ Jp \ 2Jp | fi,j = 0}. We obtain the following tables.

Table 5. The distribution of of (p, i) with z4p,i = m.

m 0 1 2 3 4 5 6 7 8

♯(p, i) ≡ (1, 0) mod 4 0 0 617 0 180 0 16 0 3
♯(p, i) ≡ (1, 2) mod 4 612 0 152 0 17 0 2 0 0
♯(p, i) ≡ (3, 0) mod 4 0 620 0 171 0 20 0 1 0
♯(p, i) ≡ (3, 2) mod 4 0 666 0 153 0 16 0 1 0

We can classify zeros into three types of zeros as in the p-cyclotomic case. Then, since the
number of index zeros is 0, z4p,i = ♯{nontrivial zeros}+ ♯{self zeros}:

z4p,i = 2z′4p,i +


2 (p, i) ≡ (1, 0) mod 4
0 (p, i) ≡ (1, 2) mod 4
1 p ≡ 3 mod 4.

The distribution of z′4p,i is also similar to the Poisson distribution Po(1/4) as follows.

Table 6. The distribution of (p, i) with z′4p,i = m.

m 0 1 2 3

The number of (p, i) 2515 656 69 7
ratio 0.77456 0.20203 0.02125 0.00216

Po(1/4) 0.77880 0.19470 0.02434 0.00203

In the following examples, we write the ratio of fi,j to ei,0. We add the subscript j to zeros.

Example 4.2.
(1) z4·379,100 = 3 = 2 + 1 (nontrivial: 317-341, self: 329)
2, 98, . . . , 137, 0317, 212, 13, 262, 310, 227, 0329, 152, 69, 117, 366, 167, 0341, 242, . . . , 45, 5.
(2) z4·379,174 = 3 = 2 + 1 (nontrivial: 267-317, self: 103)
306, 29, . . . , 193, 121, 0103, 258, . . . , 225, 0267, 89, . . . , 347, 290, 0317, 154, 124, . . . , 36, 141.
(3) z4·929,820 = 6 = 4 + 2 (nontrivial: 1-109, 139-899, self: 55, 519)
01, 383, . . . , 68, 055, 861, 670, 750, . . . , 7, 546, 0110, 110, 75, . . . , 69, 394, 0139, 272, 299, . . . ,
804, 829, 104, 461, 0519, 468, 825, . . . , 630, 657, 0899, 535, 860, . . . , 854, 819.

The zeros 0317 in (1) and (2) are very rare, because they come from the nontriviality of the
p-part of the ideal class group of the maximal totally real subfield K+ of K. In other words,
they come from the nontriviality of χ−4-part of K4m+2(Z[

√
−1])[p], where p = 379 is the unique

prime number satisfying the nontriviality in p < 20, 000, 000 (cf. [15, 16, 17]).
The zeros 01 in (3) is rare, because there is only one pair (p, i) = (929, 820) satisfying the

condition in p < 216 and i ∈ Ip.

4.3 The 4p-cyclotomic field II

Table 7. The distribution of p with r4p,χ = r.

r 0 1 2 3 4 5 ≥ 6

The number of p 3960 1993 492 80 14 3 0

Put z4p,χ,i = ♯{j ∈ Jp | gi,j = 0}. We obtain the following tables except for (p, i) =(9511,
2221), (12073, 7547), (13367, 5331), (30241, 19981), (31649, 8903), for which the relations in
Proposition 3.2 is clearly insufficient, because 22−i ≡ 1 or 2mod p (cf. [8, §5]). This issue would
be resolved by using additional relations in [3] and [10].
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Table 8. The distribution of of (p, i) with z4p,χ,i = m.

m 0 1 2 3 4 5 6 7 8 9 10 11 12 ?

♯(p, i) ≡ (1, 1) mod 4 0 0 478 0 244 0 58 0 16 0 1 0 0 1
♯(p, i) ≡ (1, 3) mod 4 0 0 504 0 235 0 63 0 11 0 1 0 0 2
♯(p, i) ≡ (3, 1) mod 4 0 0 511 0 259 0 64 0 10 0 2 0 1 1
♯(p, i) ≡ (3, 3) mod 4 0 0 520 0 235 0 56 0 13 0 1 0 0 1

Here z4p,χ,i is even, because gi,j = −gi,j′ with j 6≡ j′mod 2. We can classify zeros into three
types of zeros as in the p-cyclotomic case. Then, since the number of self zeros is 0, z4p,χ,i =
♯{nontrivial zeros}+ ♯{index zeros}:

z4p,χ,i = 2z′p,χ,i + 2.

The distribution of z′4p,χ,i is similar to the Poisson distribution Po(1/2) as follows.

Table 9. The distribution of (p, i) with z′4p,χ,i = m.

m 0 1 2 3 4 5

The number of (p, i) 2013 973 241 50 5 1
ratio 0.61316 0.29638 0.07341 0.01523 0.00152 0.00030

Po(1/2) 0.60653 0.30327 0.07582 0.01264 0.00158 0.00016

In the following examples, we write the ratio of gi,j to gi,1 (resp. gi,j to gi,p−2) if gi,1 6= 0
(resp. gi,1 = 0). We add the subscript j to zeros.

Example 4.3.
(1) z4·379,χ,317 = 2 = 0 + 2 (index: 317-317’)
1, 109, . . . , 285, 369, 0317, 331, 119, . . . , 354, 222,
-1, -109, . . . , -285, -369, 0317′ , -331, -119, . . . , -354, -222.
(2) z4·941,χ,687 = 4 = 2 + 2 (nontrivial 1-1’, index: 687-687’)
01, 413, 589, 110, . . . , 257, 437, 0687, 314, 569, 300, 212, . . . , 462, 331, 596, 13, 1,
01′ , -413, -589, -110, . . . , -257, -437, 0687′ , -314, -569, -300, -212, . . . , -462, -331, -596, -13, -1.

The zero 01 in (2) is rare, because there is only one pair (p, i) = (941, 887) satisfying the
condition in p < 216 and i ∈ I4p,χ. There is no zero 0j with j ≡ 2 − imod (p − 1) and
j′ ≡ 0mod (p− 1) in the range.

Our programs are written in C-language. They and further data are available in our web page:
https://math0.pm.tokushima-u.ac.jp/˜hiroki/major/galois1-e.html. These data were obtained
by two personal computers (CPU: AMD Ryzen 9, 3900X and 5950X, RAM: 64GB and 128GB)
for two months.
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