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Abstract

We study pairings of p-units in the 4p-cyclotomic field, following results on the p-cyclotomic
field by McCallum-Sharifi. We compute zeros of the parings for each prime number p < 2'6 =
65, 536, which give a sufficient condition for Greenberg’s generalized conjecture. We also ex-
plain rare zeros which do not appear in the p-cyclotomic field.
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1 Introduction

We first explain the main purpose of the computation, i.e., Greenberg’s generalized conjecture.
Let k be a finite extension of the rational number field Q and p an odd prime number. Let k be
the maximal multiple Z,-extension of k with Gal(k/k) =~ Zg. Leopoldt’s conjecture for k and p
implies that d = ro(k) + 1, where r2(k) is the number of complex places of k. This conjecture
holds for abelian extensions of Q (cf. [1, 2]). Let k, be the intermediate field in k/k such that
Gal(k,/k) ~ (Z/p"Z)?, A,, the p-part of the ideal class group of k,, and X, = Xoo(k) = liin A,
where the inverse limit is taken with respect to norm maps. Further let +; (1 < i < d) be
the topological generator of Gal(k/k) with (1,72, ..., 7a) =~ Zg. We can consider X, as a
A = 7,[[T1, Ty, ..., Ty]]-module by the action of T; = ; — 1.

Conjecture 1.1 (Greenberg’s generalized conjecture). For any k and p, Xoo is a pseudo-null
A-module, i.e., ht ;(Ann ;X)) > 2.

Remark 1.1. When d = 1, k is a totally real number field. If we assume Leopoldt’s conjecture
for k and p, k is the cyclotomic Zj,-extension key.. By Iwasawa’s class number formula, we
have §4,, = pM "+ for any sufficiently large n, where A = A\, (keye/k), tp(keye/k) € Zso and
v = Vp(keye/k) € Z are the Iwasawa invariants. Greenberg’s generalized conjecture implies that
Xoo is finite, i.e., A\p(keye/k) = pp(keye/k) = 0, which is called Greenberg’s conjecture for the
Iwasawa invariants of totally real number fields.

Remark 1.2. For any Zj-extension, it is shown that X is a finitely generated torsion A =
Zp|[Th, T, ..., T;]]-module in [6] under some assumptions, which are known to be unnecessary
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(cf. [9, p.232]). Hence we have ht4(AnnsX.) > 1 in general. Moreover, in [4], it is shown that
44, = plntmp"+0WP" V" g1 any sufficiently large n.

In [8, 11, 12], a sufficient condition for the conjecture is given by using cup products of cyclo-
tomic units of the p-cyclotomic field & = Q((p). Assume that the Kummer-Vandiver conjecture
holds for p, i.e., the p-part of the ideal class group of the maximal real subfield k™ of k is trivial.
Put Ej = O[1/p]* /(Ok[1/p]*)P and pp = ((p). By the assumption on the Kummer-Vandiver
conjecture, E;gﬂp is generated by cyclotomic p-units. We consider the following cup product:

Hl(Gk,p’ﬂp) X Hl(kaﬂp) - Hz(Gk,pvl‘?Q)»

where G}, ,, is the Galois group of the maximal extension of £ unramified outside p. This product
induces a pairing:
Epp % Epp = (Ae/PAk) ® pp.

Let A = Gal(k/Q) ~ (Z/pZ)*, and let w be the Teichmiiller character. Put J, = Z/(p — 1)Z.

1 . , .
For j € J,, put e,; = A Zuﬂ(d)(sfl € Z,[A], and denote by Y = ¢ ;Y the w’-part of
deA
Zp[A]-module Y. By decompositions, we can define the following pairing:

B {(EL)D x (B, )70 o (A/pa) i @,
J€2Jp

(2]

( (9) (Q—i—j))

Cp 5, Cp

o
— ey = (e,

where i € 27, ) = [(1 - ¢ “'1 e (B, ). We denote by |g] its class modulo pth power. Put
P P k.p
I, ={ie2J,| A,(:_i) #{0}},

Zpi={j€2Jp|ei; =0}, Sy =27\ |J %,

i€l

rp =41y, 2pi = 82y, and s, = §5),.

Theorem 1.1 (Sharifi [11, 12]). Assume that A,(Cj) is trivial for any j € 2J,. The height of
Ann ; X in A is one more than the mazimal number of disjoint translates j + I, with j € Sp,
and s

ht/i(Ann/iXoo) > —r +1

rg—rp—kl '

In particular, Greenberg’s generalized conjecture holds for k and p < 1,000.

The procedure to get a lower bound of the height is as follows:
(i) Compute I, from the generating function of Bernoulli numbers modulo p.
(ii) Check e; ;, # 0 for some iy by computation of an ideal of Hecke ring.
(iii) Compute S, from relations among e; ;’s.
(iv) Apply data on I, and S, to Theorem 1.1. If S, is not empty, Greenberg’s generalized
conjecture holds for Q(¢,) and p.

In [11, 12], (ii) (resp. (iii)) is done for p < 1,000 (resp. 25,000) in the p-cyclotomic field. In [5],
Fukaya and Kato show that (ii) holds if the p-adic L-functions of the even characters of Gal(k/Q)
do not have any multiple zeros. Since the condition is checked for p < 23! = 2,147,483, 648
(cf. [7]), Greenberg’s generalized conjecture holds for Q(¢{,) and p < 25, 000.

There are indices j with e;; = 0 which can be easily calculated from i and p. We call
these zeros trivial, and the other zeros nontrivial. In this paper, we similarly study trivial and
nontrivial zeros of parings of p-units in the 4p-cyclotomic field. For details, see §3 and §4.



Theorem 1.2. Let 2,,;, 24,; and zj,, ; be the half number of nontrivial zeros in the pairings.

For p < 216 = 65,536, the distributions are given in Table 1:

Table 1. The number of (p,i) with 2’ = m.
m 0 1 2 3 4
Z;/),i 2523 640 80 4 O

Zpi | 2515 656 69 T 0

2013 973 241 50 5

_= O O ot

Tl O OV

Zﬁlp X,

Recall that a discrete random variable X has the Poisson distribution Po(\) if the probability
mass function of X is given by Pr(X = k) = Afe=*/k! for k € Z>o. Each distribution in Table
1 is similar to the Poisson distribution Po(1/4) or Po(1/2). We also obtain rare zeros which do
not appear in the p-cyclotomic field. From the data on zeros, we obtain the following theorem.

Theorem 1.3. Greenberg’s generalized conjecture holds for Q((,) and p < 216 — 65,536. Fur-
ther, the conjecture holds for Q((up) and p < 2'¢ with p = 3 mod 4 except for p = 379, 9511 and
13367.

2 Definition of maps and Ks-groups

We recall some definitions and theorems (cf. [8, §3]). The Milnor K»-group of a commutative
ring R is defined as follows:

K (R)=(R*®@R")/{(a® (1 —a); a,1—a € RX).

Let K be a number field with K D p,. In [14], a particular choice of isomorphisms is described
as a Chern class map:

chy : Kao(Ok[1/p))/p= H*(Gr p, 15°).

By a classical result of Matsumoto, we may identify K37 (K) with Ko(K). The group K2(Ox[1/p])
may defined via the exact localization sequence:

0 — Ka(Ok[1/p]) = K2(K) — Pk =0,
qtp

where kg denotes the residue field of K at g. Since two p-units pair trivially under the tame
symbol, the image of
K31 (Ok[1/p]) = K3'(K) = K>(K)

is contained in K3(Ox[1/p]). This yields K3 (Ox[1/p]) — K2(Ox[1/p]) and

rp + K31 (Ok[L/p)) /p — K2(Ok[1/p]) /p-
Here, the map
up : K3 (Ok[1/p])/p = H*(Grp 13,%)
coincides with (—chy) o ;. Put By, = Ok[1/p]* /(O [1/p]*)P. Further, the natural map

np: Bl % B, = K3 (Ox[1/p]) /p
is surjective. Finally, define the map

. / / 2 X2
Rp * EK,pXEK,p—>H (GK@,,LLP ),

_ o /
by kp = up o ny = (—chyp) o Ky, 0Ny

Conjecture 2.1 (McCallum-Sharifi). For all p and k = Q({p), &,

p 18 surjective, i.e., by the

A-decomposition,

Fipi © (Efp % Epp) ™ = HA(Gp, 13?29,

is surjective for all i € 2J),.



3 Relations of a pairing in the 4p-cyclotomic fields

Put Cip = Gl = V-1, K = Q(Gp) = QV-1,{), k = Q) A = Gal(K/Q) and A =

Gal(k/Q) ~ Gal(K/Q(v/—1)). We consider A as the subgroup of A by this isomorphism. The
Dirichlet character group of A is {x‘w’|i = 0,1, j € I,}, where x = x_4 is the Dirichlet

1 . - ~ i .
character associated to Q(v/—1). Put é,i,; = fA Z X'wi(8)671 € Z,[A]. We write AX') =
seA
€yiwi A for a Zy[Al-module A, and AV) = e; A for a Z,[A]-module A. Note that €\0ui = HTe s,

where (1) = Gal(K/k). We similarly write a(x'7) and ol/) for an element o € A.
. O .
Then, we have I, = L0 = {i € 2J,| A" ~ AQ1") = (01} and 7, = t1,,,0. Put

Lipy = {i € Jp\ 2J, | AL ™) £ {0}} and 14, = 4 -

Even when p splits in Q(v/—1), the p-part of the subgroup generated by the ideal classes
of prime ideals above p is also trivial in Ax. Hence, as in [8, §2], we have the following exact
sequence:

0= (Ax/PAK) ® pp — H2(GK,paM§)2) - @Hp — pp = 0.
vlp

Since (A /pAx)X9 is trivial, this sequence implies that

(Ar /pAR) ) @ iy = H (G, i) 0077

for any i € Iy ,,. We also have
(Ar/pAR) ) @ iy = H (G, i)

for any i € I,,.

In §3.1 and §3.2, we consider a pairing whose image is contained in (Agx /pAK)(XOJ_i) ®
tp = (Ag/pAp)3 @ p, for i € I,. In §3.3, we consider a pairing which are contained in
(AK/pAK)(X’l_Z) ® pp for @ € Iyp .

3.1 The p-cyclotomic field
We fix p and i € I, C 2J,. For j € 2J,, put
j=2—i—je2l,

In §1-2, we introduced the following pairing:

fni s €D {(EL)D x (B} o (A/pa) i) @,
(e i) = ey = (o) e i

Proposition 3.1. (cf. [8, §5]) For all even integers a with4 < a <p—1,

D (l4d —2)1-2")1 - (a—1))e;; = 0.
je2J,

Further, for any j € 2Jp,
eij +é€ij = 0.



3.2 4p-cyclotomic field 1

We fix p and ¢ € I, C 2J,. For j € I, put
F =2
As in §2, we consider the following pairing:

manas @ {(Biep) ) x (B ) |

JEIp\2Jp
o P {(Ek,p)b&j) x (Ek,p)<x°,j’>} — (A /pAr)X" 1) @
J€2Jp
(c%’j), cfé’jl)) = fij = <C$§’j)’ C%’jl)ﬂpvi’
(céj),c(j/)) e = <c§j),6§j/)>4pm

where c(07) = [(1 — ¢4,) 7)) € (E}Qp)(x’j). For a € Z and j € Jp, we define

o 1 a=1mod4
Yai =9\ 921 -1  ¢=3mod4.

Proposition 3.2. For all odd integers a with 3 < a <p—2,

S - ()T )iy

JE€Ip\2Jp

+ Y 2N - 1) - 1) <2j’—1(1 — ) +ugji(a — 1)j'> e = 0.
je2d,

Further, for any j € J, \ 2Jp,
fij+ fijy=0.

3.3 4p-cyclotomic field 11

We fix p and i € Iy, C Jp \ 2J,. For j € Jp, put
j=2—i—3j.

As in §2, we consider the following pairing:

. o0
Fdpxi ° @ {(E}(,p)(xu) > (E}(’p)(x J")

JE€JIp\2Jp
BBl )X x (B )0 L = (A /pAR)®1=) @
) = 7
CRNESD = gy = (e ) g

where ¢U) € (E,’ap)(j/) ~ (E}(yp)(j/).
Proposition 3.3. For all odd integers a with 3 < a <p— 2,
Y {a- (-1 ) (23"—1(1 —9") +ugy(a— 1)j’> G

JET\2Jp ’ ’ ‘
+27 712" —1)(1 — @ )g; ;1 } = 0.



For all even integers a with 4 <a <p—1,

Yo -1 (a1 = 1)giy

JE€Ip\2Jp

(1= (<) (@ = 1)7) (2711 = 27) + wgra ) iy} = 0.

Further, for any j € J, \ 2Jp,
9i,j + iy = 0.

3.4 Proofs of propositions

The anti-symmetry relation of each proposition is obtained form the anti-symmetry relation of
K5(K). We prove the other relations by using special cyclotomic units. For n, a € Z>1, we
define the following element of Q((,):

a—1
Pn,a = Z(_gn)] =1- Cn + CEL +o (_1)a—1gg—1‘
=0
Then, we have
1-¢° 1—-(H(1—¢,
) G006 g
1+ (-l ) 146G 1-¢ (3.1)
e L+ G LG _ (1_472#)(1_%) a = 1mod?2 |
T+6 (1= -G B '
For n = 4p, we have
1 -4 a = 1mod 2
1— 2a
1 — (¢ = P = 32
C4p 1—C;; a =2mod4 (3.2)

1—-¢ a = 0mod 4.
As in §1, we denote by [] its class modulo pth power.

Proposition 3.4. (cf. [8, §5]) Forn=p ordp, anda € Z with2 < a <p—1, ppq and ppa—1
are p-units in K. Further, the image ry([pn.al, [Pna—1]) is trivial in H*(G g p, p$?).

Proof. Note that a # 0,1 mod p. Since 1 — (, and 1 — (4, are p-units in K, the first assertion
follows immediately from (3.2). In the following, {z,y} denotes an element in K3!(K)/p. For
n = p, it is easy to see that {1 — (%, ¢} = a {1 —¢%, ¢} =0 and {pnq, ¢} = 0. For n = 4p, if
a = 1mod 2, we have {1 — (%,¢,} = a {1 - (% ¢} =0. If a = 0mod 2, as (4 = (4(p, We also
have {1 — (%, (o} = {1 — (%, ¢} = 0 by the above expression. These imply that {pn.q,Cn} = 0.
Since <npn,a71 = Cn - C?z + (*1)(1_2 3_1 =1- Pn,as

{Pn,aa Pn,afl} = {pn,aa Cn} + {Pn,aa pn,afl} = {,On,aa 1-— ,On,a} =0.
This implies the second assertion. O

Before the proofs of propositions, we give some equalities. For j € Z with (j,4p) = 1, let §;
be an element of Gal(Q({sy)/Q) satisfying ij) = (},- Let a € Z with 1 <a <p—1. We have

147
%ew,

(1= ¢HXMD = [(1—¢2) 7 i) =[(1— ¢H)V] = [(1 - §)>) D] = (W) Ca) = ())e (3.3)



and ‘
(1= ¢ = [1]. (3.4)

Further, if a = 1 mod 2, we have

0 - 147 1— 4a (])% N o
(1= i)™ =11 ¢h) * ] = (1 - Za> = [(c9))? G @) (3-5)
P

and
[(1— Cilp)(x’j)] =[((1 - C4p)6a)(x,j)] — (C(x,j))ij(z?a) — (C(XJ))x(a)aj — (C(x,j))(—l)a?;laj. (3.6)
The first relation of Proposition 3.1. By Proposition 3.4, we have

fa-¢a-6¢) 0-¢“He-¢))
{”pva”’m-l}‘{ ¢ a-gha-@ "

By (3.3), the contribution of pg,{g to the coefficient is
al +1—29,

and that of pg;)_l is

20— +1—(a—1)7" =2 =1 -2)(1 = (a — 1)7).
Therefore, we obtain the first relation.

The first relation of Proposition 3.2. By Proposition 3.4, we have

(LG —Gp) -GG _
1-¢)0-G) 1-¢, |

{pap.as papa—1} = {

By (3.4) and (3.6), the contribution of p%:i) to the coefficient is
1—x(a)a? =1 — (=1)(e=D/2g7,

and that of p%:ilzl is 1. On the other hand, by (3.2), (3.3) and (3.5), the contribution of p%i;j)

1S
(4a)’ — (2a)7 +27127(27 —1) —274(2a)7 (29 — 1) — (47 — 27) = 277127 —1)(a’ — 1),
(AN
and that of pg’f_ )1 is

(a—1)" 427127 (2" —1) - (W' =27y =271 (1-2"Y+(a—1)7 a=1mod 4

(2(a — 1)) — (a—1)7" + 27127 (20" —1) — (47" — 27")
=211 -2+ (2" = 1)(a—1)7 a =3mod 4,

that is, 27'~1(1 — 27") + Ug jr(a — 1)J". Therefore, we obtain the first relation.



The first and second relations of Proposition 3.3. For an odd integer a, by Proposition
3.4, we have

(1= G0 =) (10— @p)} ~0.

{Pap.as Papa—1} = { (1— CZp)(l - ﬁp)’ 1— Cfp

By (3.4) and (3.6), the contribution of pfff):i) to the coefficient is

1—x(a)a? =1 — (=1)(@=D/247,

and that of pz(é,if: )1 is
2711 — 27"+ ug o (a — 1)
as in Proposition 3.2.

On the other hand, by (3.2), (3.3) and (3.5), the contribution of pféljl) is

2" =127 — 1) (0 — 1),

and that of pElX:;)_l is 1. Therefore, we obtain the first relation.
For an even integer a, by Proposition 3.4, we have

(1= g) (0 = o) (1= G )1~ ) } »
1_Cz%p 7 (1 _CZp_l)(l_Czp) .

{Pap.a Papa—1} = {

By (3.4) and (3.6), the contribution of py]g:i) to the coefficient is 1, and that of p%i;j_l )1 is

(4la = 1)) = (2(a—1) +27127(2" 1) = (271 (2(a — 1)) (2" = 1)) — (4" — 27"
=212 —1)((a —1)7" —1).

On the other hand, by (3.2), (3.3) and (3.5), the contribution of p%i;j/) is

ol +27127 (27" — 1) — (4" — 27" =211 -2") + o a=0mod 4
(2a) —al +27127 (27" —1) — (W' —27") =211 -2")4+ (2 = 1)/’ a=2mod 4,

that is, 2771 (1 — 2) + ug41 a7’ By (3.2), (3.4) and (3.6), that of p{<7) | is

a—

1—(=1)"2 (a—1).

Therefore, we obtain the second relation.

4 Proof of Theorems 1.2 and 1.3

First, by [5] and numerical results on Iwasawa invariants in [17], the following conjecture (a
special version of Conjecture 4.3.5(ii) in [13]) holds for p < 20,000, 000.

Conjecture 4.1. k,; and K4y ; (resp. H4p,x,z‘) are nontrivial maps for allp andi € I,,, (resp. I4p,x)'

Next, put
Ly =1 U Lapx C Jp,

Sipeven = {J € 2Jp|e;j #0 for any i € I, and g;; #0 for any i € Iy},



Sapodd ={J € Jp\2Jp| fij #0 for any i € I, and g;; # 0 for any i € Iy},
S4p = S4p,even U S4p,odd7
r4p = §l4p and sy4p = §S4,. Since there are only one prime ideal above p in K when p = 3 mod 4,

we can show the following theorem for K = Q({sp) by the argument of the proof of Theorem
1.1.

Theorem 4.1. Assume that A,(Cj) is trivial for any j € 2J, and that A%’j) is trivial for any
J € Jp\2Jp. When p =3 mod 4, the height of Ann ; X(K) in A = A(K) is one more than the
mazximal number of disjoint translates j + Isp with j € Syp, and

S4p

2 —7“4p—|-1

ht/I(Ann/]Xoo(K)) >

+ 1

Proof. We outline the proof for readers’ convenience (for details, see the proof of [12, Theorem
4.2 and Corollary 4.3]). For an algebraic extension F' over Q, let Xp be the Galois group of
the maximal unramified abelian p-extension over F', and Yr the Galois group of the maximal
unramified abelian p-extension in which every prime above p in F splits completely over F.
Let ji1, j2, ..., ja € Jp be such that the translates js + I, are all disjoint as s runs over

1 < s <d. Let Ly denote the unique Zj-extension of K., Galois over Q and abelian over K
that contains a pth root of cgs) (resp. cff]g’]s)) for js € 2.J, (vesp. Jp\ 2.Jp). Let Mg = LiLy--- Ly
for 1 < s < d and set My = K¢ye. Suppose by induction on d that Yy, , ~ Xk .. Put
G = Gal(Mg/Keye). H = Gal(My/Mg—1) and T' = Gal(Mg/Lq). By the assumption jg; € Sap,
we can show that

YLd ~ XKcyc
(see [12, Proposition 3.3]). Since there is only one prime in My over p which is totally ramified
in My/K, we have

(Yar,)r ~ Y1,

where (Yaz,)r is the T-coinvariant quotient of Ys,. From this, we can show that
ITYn, € IuYwy,,

where I (resp. Iy) is the augmentation ideal for T' (resp. H) in Zy[[G]]. Consider for N = H

and N = T the natural surjective Z,[A]-homomorphism
TN : XKcyc ®zp N — (INYMd)G;

with
7TN(.%‘ &® U) = (O‘ - l)i' mod IngYMd,

where Z € Yy, restricts to . Since the Z,[A]-eigenspaces of Xy, ®z, N are nontrivial outside
of those of the character w?~"=Jt or XwQ_l_ﬂ withi € Iypand 1 <t <d—-1if N=Tandt=d
if N = H, we have that (InYar,)q is also nontrivial at most in these eigenspaces. Since the
Jt + Iyp are all disjoint, the canonical map

(IrYm)e = (IaYu,)a

is zero. From this, we can show (IgYy,)e = 0, that is,

YMd = (YMd)H = YMdfl = XKcyc'

Since there exists only one prime over p in My, the kernel of X, — YY)y, is a quotient of Z,,
so Xy, is finitely generated over Z,. By [12, Corollary 2.3], the annihilator of X has height

at least d + 1 as a A(K)-module. The inequality can be obtained in a similar way to that in
Theorem 1.1. O

By these results, the following numerical data imply Theorems 1.2 and 1.3.



4.1 The p-cyclotomic field
Following computation in [12], we compute up to p < 2'6 = 65, 536.
Table 2. The distribution of p with r, = r.

r 0 1 2 3 4 >5
The number of p | 3976 1979 497 8 4 0

We obtain the following table.

Table 3. The distribution of (p, ) with z,; = m.
2 3 4 ) 6 7T 8
0

m 9 10
f(p,i) = (1,0) mod 4 | 642 0 155 19 0 0 0 0
f(p,i)=(1,2) mod4 | 0 0 597 0 165 0 19 0 2
H(p,i)=(3,0) mod4| O 636 0 154 0 22 0 0 O
H(p,i)=(3,2) mod4| O 648 0 166 0O 20 0 2 0

Put z,; = #{j € 2Jp | e;; = 0}. First, we note that there are pairs of zeros by anti-symmetry
€;,j = —e;j» when j # j'. In this paper, “index zeros” mean the pair of zeros which come from
the index 7, and “self zeros” mean zeros which come from the relation (¢, c¢) = 0. The other zeros
are called “nontrivial zeros”. We denote by 22’;/3,1‘ the number of “nontrivial zeros” for p and i.
By definition, we have

zp,i = f{nontrivial zeros} + #§{index zeros} + #{self zeros}.

Since the number of index zeros is 2, we have

0 (p,i)=(1,0) mod4
2pi =22,;+2+14 2 (p,i)=(1,2) mod 4
1 p=3 mod 4.

The distribution of z, ; is similar to the Poisson distribution Po(1/4) as follows.

Table 4. The distribution of (p,7) with 2, ; = m.

m 0 1 2 3
The number of (p,7) | 2523 640 80 4
ratio 0.77702 0.19711 0.02464 0.00123
Po(1/4) 0.77880 0.19470 0.02434 0.00203
In the following examples, we write the ratio of e; ; to e; 0. There is no pair (p, i) with e;o =0
in p < 2'6. We add the subscript j to zeros.
Example 4.1.

(1) z101,68 =4 =2+ 2+ 0 (nontrivial: 46-88, index: 66-68)

1, 84, 84, 89, 35, 29, 48, 15, 70, 31, 86, 53, 72, 66, 12, 17, 17, 100, 45, 61, 5, 75, 38, 044, 40, 20,
30, 66, 9, 28, 37, 95, 13, Og¢, Ogs, 88, 6, 64, 73, 92, 35, 71, 81, 61, Ogg, 63, 26, 96, 40, 56.

(2) 2379,100 = 3=04+2+1 (index: 100-180, self: 140)

1,97, ..., 279, 159, 0199, 258, ..., 168, 0149, 211, 173, ..., 140, 121, 0159, 220, ..., 140, 206.
(3) 2379,174 = 3=0+2+1 (index: 32-174, self: 292)

1, 310, ..., 51, O39, 44, 143, ..., 236, 335, 0174, 328, 270, ..., 325, 2, 0292, 377, 54, ..., 91, 63.
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4.2 The 4p-cyclotomic field I
Put z4p; = #{j € Jp \ 2J, | fi,; = 0}. We obtain the following tables.

Table 5. The distribution of of (p, ) with z4p; = m.

m 0 1 2 3 4 5 6 7 8
f(p,i)=(1,0) mod4| 0 0 617 0 180 0 16 0 3
#(p,i) =(1,2) mod4 | 612 0 152 0 17 0 2 0 O
f(p,i)=(3,0) mod4 | 0 620 0 171 0 20 0 1 0
f(p,i)=(3,2) modd | 0O 666 0 153 0 16 0 1 0

We can classify zeros into three types of zeros as in the p-cyclotomic case. Then, since the
number of index zeros is 0, z4p; = §{nontrivial zeros} + f{self zeros}:

2 (p,i)=(1,0) mod 4
Zapi = 2245, +< 0 (p,i) =(1,2) mod 4
1 p=3 mod 4.

The distribution of 2}, ; is also similar to the Poisson distribution Po(1/4) as follows.

Table 6. The distribution of (p,7) with 2}, ; = m.

m 0 1 2 3

The number of (p,i) | 2515 656 69 7
ratio 0.77456  0.20203 0.02125 0.00216
Po(1/4) 0.77830 0.19470 0.02434 0.00203

In the following examples, we write the ratio of f; ; to e; 0. We add the subscript j to zeros.

Example 4.2.

(1) 24.379,100 = 3=2+41 (nontrivial: 317-341, self: 329)

2,98, ..., 137, 0317, 212, 13, 262, 310, 227, 0329, 152, 69, 117, 366, 167, 0341, 242, ..., 45, 5.
(2) z4.379,174 = 3 = 2+ 1 (nontrivial: 267-317, self: 103)

306, 29, ..., 193, 121, 0103, 258, ..., 225, 027, 89, ..., 347, 290, 0317, 154, 124, ..., 36, 141.
(3) 24.929,820 = 6=4+42 (IlOIltI‘iViali 1—109, 139—899, self: 55, 519)

01, 383, ..., 68, 055, 861, 670, 750, ..., 7, 546, 0119, 110, 75, ..., 69, 394, 0139, 272, 299, ...,
804, 829, 104, 461, 0519, 468, 825, ..., 630, 657, 099, 535, 860, ..., 854, 819.

The zeros 0317 in (1) and (2) are very rare, because they come from the nontriviality of the
p-part of the ideal class group of the maximal totally real subfield K of K. In other words,
they come from the nontriviality of x_s-part of Kyy,+2(Z[v/—1])[p], where p = 379 is the unique
prime number satisfying the nontriviality in p < 20,000,000 (cf. [15, 16, 17]).

The zeros 07 in (3) is rare, because there is only one pair (p,i) = (929, 820) satisfying the
condition in p < 26 and i € 1.

4.3 The 4p-cyclotomic field II

Table 7. The distribution of p with 74, , = r.
T 0 1 2 3 4 5 >6
The number of p | 3960 1993 492 80 14 3 0

Put zap\i = H{j € Jp|gi; = 0}. We obtain the following tables except for (p,i) =(9511,
9921), (12073, 7547), (13367, 5331), (30241, 19981), (31649, 8903), for which the relations in
Proposition 3.2 is clearly insufficient, because 227" = 1 or 2modp (cf. [8, §5]). This issue would
be resolved by using additional relations in [3] and [10].
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Table 8. The distribution of of (p, ) with 24y, = m.
m o1 2 3 4 5 6 7 8 9 10 11 127
#(p,i)=(1,1) mod4 |0 O 478 0 244 0 58 0 16 0 1 0O 0|1
(p,i) =(1,3) mod4 |0 O 504 0 235 0 63 0 11 0 1 0 O |2
#(p,i) =(3,1) mod4 |0 O 511 0 259 0 64 0 10 0 2 0 1|1
#(p,i) =(3,3) mod4 |0 0O 520 0 235 0 5 0 13 0 1 0 0 |1
Here 24y, is even, because g; j = —g; j with j # j'mod2. We can classify zeros into three

types of zeros as in the p-cyclotomic case. Then, since the number of self zeros is 0, z4p i =
f#{nontrivial zeros} + #{index zeros}:

Z4p,x,i = 22;7%1' + 2.
The distribution of z}, , ; is similar to the Poisson distribution Po(1/2) as follows.

Table 9. The distribution of (p,7) with 2, , =m.

m 0 1 2 3 4 5

The number of (p, 7) 2013 973 241 50 5 1
ratio 0.61316 0.29638 0.07341 0.01523 0.00152 0.00030
Po(1/2) 0.60653 0.30327 0.07582 0.01264 0.00158 0.00016

In the following examples, we write the ratio of g;j to gi1 (resp. g;; to gip—2) if gi1 # 0
(resp. gi1 = 0). We add the subscript j to zeros.

Example 4.3.

(1) 24.379,x,317 = 2=042 (index: 317—317’)

1, 109, ..., 285, 369, 0317, 331, 119, ..., 354, 222,

-1, -109, ..., -285, -369, 0317/, -331, -119, ..., -354, -222.

(2) z4.941,y,687 = 4 =2+ 2 (nontrivial 1-1’, index: 687-687")

01, 413, 589, 110, ..., 257, 437, Ogs7, 314, 569, 300, 212, ..., 462, 331, 596, 13, 1,

0qs, -413, -589, -110, ..., -257, -437, Ogs7, -314, -569, -300, -212, ..., -462, -331, -596, -13, -1.

The zero 01 in (2) is rare, because there is only one pair (p,i) = (941, 887) satisfying the
condition in p < 2! and i € Iy,,. There is no zero 0; with j = 2 —imod(p — 1) and
j'=0mod (p — 1) in the range.

Our programs are written in C-language. They and further data are available in our web page:
https://math0.pm.tokushima-u.ac.jp/ hiroki/major/galoisl-e.html. These data were obtained
by two personal computers (CPU: AMD Ryzen 9, 3900X and 5950X, RAM: 64GB and 128GB)

for two months.
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