Greenberg's generalized conjecture and pairings of p-units in the 4p-cyclotomic field

Hiroki Sumida-Takahashi, Naoki Furuya and Kodai Kitano

Department of Mathematical Sciences,
Tokushima University,
Minamijosanjima-cho 2-1, Tokushima 770-8506, JAPAN
e-mail address: hirokit@tokushima-u.ac.jp

Abstract

We study pairings of p-units in the 4p-cyclotomic field, following results on the p-cyclotomic field by McCallum–Sharifi. We compute zeros of the parings for each prime number $p < 2^{16} = 65,536$, which give a sufficient condition for Greenberg's generalized conjecture. We also explain rare zeros which do not appear in the p-cyclotomic field.

Key words: Greenberg's generalized conjecture, paring of p-units, K_2 -group 2020 Mathematics Subject Classification: Primary 11R23; Secondary 11R18, 11R29, 11R70

1 Introduction

We first explain the main purpose of the computation, i.e., Greenberg's generalized conjecture. Let k be a finite extension of the rational number field \mathbb{Q} and p an odd prime number. Let \tilde{k} be the maximal multiple \mathbb{Z}_p -extension of k with $\operatorname{Gal}(\tilde{k}/k) \simeq \mathbb{Z}_p^d$. Leopoldt's conjecture for k and p implies that $d = r_2(k) + 1$, where $r_2(k)$ is the number of complex places of k. This conjecture holds for abelian extensions of \mathbb{Q} (cf. [1, 2]). Let k_n be the intermediate field in \tilde{k}/k such that $\operatorname{Gal}(k_n/k) \simeq (\mathbb{Z}/p^n\mathbb{Z})^d$, A_n the p-part of the ideal class group of k_n , and $X_\infty = X_\infty(k) = \lim_{k \to \infty} A_n$, where the inverse limit is taken with respect to norm maps. Further let γ_i ($1 \le i \le d$) be the topological generator of $\operatorname{Gal}(\tilde{k}/k)$ with $\overline{\langle \gamma_1, \gamma_2, ..., \gamma_d \rangle} \simeq \mathbb{Z}_p^d$. We can consider X_∞ as a $\tilde{A} = \mathbb{Z}_p[[T_1, T_2, ..., T_d]]$ -module by the action of $T_i = \gamma_i - 1$.

Conjecture 1.1 (Greenberg's generalized conjecture). For any k and p, X_{∞} is a pseudo-null $\tilde{\Lambda}$ -module, i.e., $\operatorname{ht}_{\tilde{\Lambda}}(\operatorname{Ann}_{\tilde{\Lambda}}X_{\infty}) \geq 2$.

Remark 1.1. When d=1, k is a totally real number field. If we assume Leopoldt's conjecture for k and p, \tilde{k} is the cyclotomic \mathbb{Z}_p -extension k_{cyc} . By Iwasawa's class number formula, we have $\sharp A_n = p^{\lambda n + \mu p^n + \nu}$ for any sufficiently large n, where $\lambda = \lambda_p(k_{cyc}/k)$, $\mu_p(k_{cyc}/k) \in \mathbb{Z}_{\geq 0}$ and $\nu = \nu_p(k_{cyc}/k) \in \mathbb{Z}$ are the Iwasawa invariants. Greenberg's generalized conjecture implies that X_{∞} is finite, i.e., $\lambda_p(k_{cyc}/k) = \mu_p(k_{cyc}/k) = 0$, which is called Greenberg's conjecture for the Iwasawa invariants of totally real number fields.

Remark 1.2. For any \mathbb{Z}_p^r -extension, it is shown that X_{∞} is a finitely generated torsion $\Lambda = \mathbb{Z}_p[[T_1, T_2, ..., T_r]]$ -module in [6] under some assumptions, which are known to be unnecessary

^{*}ORCID:0000-0003-3928-9481.

(cf. [9, p.232]). Hence we have $\operatorname{ht}_{\Lambda}(\operatorname{Ann}_{\Lambda}X_{\infty}) \geq 1$ in general. Moreover, in [4], it is shown that $\sharp A_n = p^{(ln+mp^n+O(1))p^{(r-1)n}}$ for any sufficiently large n.

In [8, 11, 12], a sufficient condition for the conjecture is given by using cup products of cyclotomic units of the p-cyclotomic field $k = \mathbb{Q}(\zeta_p)$. Assume that the Kummer-Vandiver conjecture holds for p, i.e., the p-part of the ideal class group of the maximal real subfield k^+ of k is trivial. Put $E'_{k,p} = \mathcal{O}_k[1/p]^\times/(\mathcal{O}_k[1/p]^\times)^p$ and $\mu_p = \langle \zeta_p \rangle$. By the assumption on the Kummer-Vandiver conjecture, $E'_{k,p}$ is generated by cyclotomic p-units. We consider the following cup product:

$$H^1(G_{k,p},\mu_p) \times H^1(G_{k,p},\mu_p) \to H^2(G_{k,p},\mu_p^{\otimes 2}),$$

where $G_{k,p}$ is the Galois group of the maximal extension of k unramified outside p. This product induces a pairing:

$$E'_{k,p} \times E'_{k,p} \to (A_k/pA_k) \otimes \mu_p$$
.

Let $\Delta = \operatorname{Gal}(k/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$, and let ω be the Teichmüller character. Put $J_p = \mathbb{Z}/(p-1)\mathbb{Z}$. For $j \in J_p$, put $e_{\omega^j} = \frac{1}{\sharp \Delta} \sum_{\delta \in \Delta} \omega^j(\delta) \delta^{-1} \in \mathbb{Z}_p[\Delta]$, and denote by $Y^{(j)} = e_{\omega^j} Y$ the ω^j -part of

 $\mathbb{Z}_p[\Delta]$ -module Y. By decompositions, we can define the following pairing:

$$\bigoplus_{j \in 2J_p} \left\{ (E'_{k,p})^{(j)} \times (E'_{k,p})^{(2-i-j)} \right\} \to (A_k/pA_k)^{(1-i)} \otimes \mu_p$$

$$(c_p^{(j)}, c_p^{(2-i-j)}) \mapsto e_{i,j} = \langle c_p^{(j)}, c_p^{(2-i-j)} \rangle_i,$$

where $i \in 2J_p$, $c^{(j)} = [(1 - \zeta_p)^{\omega^j}] \in (E'_{k,p})^{(j)}$. We denote by $[\varepsilon]$ its class modulo pth power. Put

$$I_p = \{ i \in 2J_p \mid A_k^{(1-i)} \neq \{0\} \},$$

$$Z_{p,i} = \{ j \in 2J_p \mid e_{i,j} = 0 \}, \quad S_p = 2J_p \setminus \bigcup_{i \in I_p} Z_{p,i},$$

 $r_p = \sharp I_p, \ z_{p,i} = \sharp Z_{p,i}, \ \text{and} \ s_p = \sharp S_p.$

Theorem 1.1 (Sharifi [11, 12]). Assume that $A_k^{(j)}$ is trivial for any $j \in 2J_p$. The height of $\operatorname{Ann}_{\tilde{A}} X_{\infty}$ in \tilde{A} is one more than the maximal number of disjoint translates $j + I_p$ with $j \in S_p$, and

$$\operatorname{ht}_{\tilde{\Lambda}}(\operatorname{Ann}_{\tilde{\Lambda}}X_{\infty}) \ge \frac{s_p}{r_p^2 - r_p + 1} + 1.$$

In particular, Greenberg's generalized conjecture holds for k and p < 1,000.

The procedure to get a lower bound of the height is as follows:

- (i) Compute I_p from the generating function of Bernoulli numbers modulo p.
- (ii) Check $e_{i,i_0} \neq 0$ for some i_0 by computation of an ideal of Hecke ring.
- (iii) Compute S_p from relations among $e_{i,j}$'s.
- (iv) Apply data on I_p and S_p to Theorem 1.1. If S_p is not empty, Greenberg's generalized conjecture holds for $\mathbb{Q}(\zeta_p)$ and p.

In [11, 12], (ii) (resp. (iii)) is done for p < 1,000 (resp. 25,000) in the p-cyclotomic field. In [5], Fukaya and Kato show that (ii) holds if the p-adic L-functions of the even characters of $Gal(k/\mathbb{Q})$ do not have any multiple zeros. Since the condition is checked for $p < 2^{31} = 2,147,483,648$ (cf. [7]), Greenberg's generalized conjecture holds for $\mathbb{Q}(\zeta_p)$ and p < 25,000.

There are indices j with $e_{i,j} = 0$ which can be easily calculated from i and p. We call these zeros trivial, and the other zeros nontrivial. In this paper, we similarly study trivial and nontrivial zeros of parings of p-units in the 4p-cyclotomic field. For details, see §3 and §4.

Theorem 1.2. Let $z'_{p,i}$, $z'_{4p,i}$ and $z'_{4p,\chi,i}$ be the half number of nontrivial zeros in the pairings. For $p < 2^{16} = 65,536$, the distributions are given in Table 1:

Table 1. The number	of	(p,i)) with z	'=m.
---------------------	----	-------	------------	------

			~ - (I	, , ,			
m	0	1	2	3	4	5	?
$z'_{p,i}$	2523	640	80	4	0	0	0
$z'_{4p,i}$	2515	656	69	7	0	0	0
$z'_{4p,\chi,i}$	2013	973	241	50	5	1	5

Recall that a discrete random variable X has the Poisson distribution $\operatorname{Po}(\lambda)$ if the probability mass function of X is given by $\operatorname{Pr}(X=k)=\lambda^k e^{-\lambda}/k!$ for $k\in\mathbb{Z}_{\geq 0}$. Each distribution in Table 1 is similar to the Poisson distribution $\operatorname{Po}(1/4)$ or $\operatorname{Po}(1/2)$. We also obtain rare zeros which do not appear in the p-cyclotomic field. From the data on zeros, we obtain the following theorem.

Theorem 1.3. Greenberg's generalized conjecture holds for $\mathbb{Q}(\zeta_p)$ and $p < 2^{16} = 65,536$. Further, the conjecture holds for $\mathbb{Q}(\zeta_{4p})$ and $p < 2^{16}$ with $p \equiv 3 \mod 4$ except for p = 379,9511 and 13367.

2 Definition of maps and K_2 -groups

We recall some definitions and theorems (cf. [8, §3]). The Milnor K_2 -group of a commutative ring R is defined as follows:

$$K_2^M(R) = (R^{\times} \otimes R^{\times})/\langle a \otimes (1-a); a, 1-a \in R^{\times} \rangle.$$

Let K be a number field with $K \supset \mu_p$. In [14], a particular choice of isomorphisms is described as a Chern class map:

$$ch_p: K_2(O_K[1/p])/p \tilde{\to} H^2(G_{K,p}, \mu_p^{\otimes 2}).$$

By a classical result of Matsumoto, we may identify $K_2^M(K)$ with $K_2(K)$. The group $K_2(O_K[1/p])$ may defined via the exact localization sequence:

$$0 \to K_2(O_K[1/p]) \to K_2(K) \to \bigoplus_{\mathfrak{gl}_{\mathcal{D}}} k_{\mathfrak{q}}^{\times} \to 0,$$

where $k_{\mathfrak{q}}$ denotes the residue field of K at \mathfrak{q} . Since two p-units pair trivially under the tame symbol, the image of

$$K_2^M(O_K[1/p]) \to K_2^M(K) = K_2(K)$$

is contained in $K_2(O_K[1/p])$. This yields $K_2^M(O_K[1/p]) \to K_2(O_K[1/p])$ and

$$\kappa_p': K_2^M(O_K[1/p])/p \to K_2(O_K[1/p])/p.$$

Here, the map

$$u_p: K_2^M(O_K[1/p])/p \to H^2(G_{K,p}, \mu_p^{\otimes 2})$$

coincides with $(-ch_p) \circ \kappa_p'$. Put $E_{K,p}' = \mathcal{O}_K[1/p]^{\times}/(\mathcal{O}_K[1/p]^{\times})^p$. Further, the natural map

$$n_p: E'_{K,p} \times E'_{K,p} \to K_2^M(O_K[1/p])/p$$

is surjective. Finally, define the map

$$\kappa_p: E'_{K,p} \times E'_{K,p} \to H^2(G_{K,p}, \mu_p^{\otimes 2}),$$

by $\kappa_p = u_p \circ n_p = (-ch_p) \circ \kappa'_p \circ n_p$.

Conjecture 2.1 (McCallum-Sharifi). For all p and $k = \mathbb{Q}(\zeta_p)$, κ'_p is surjective, i.e., by the Δ -decomposition,

$$\kappa_{p,i}: (E'_{k,p} \times E'_{k,p})^{(2-i)} \to H^2(G_{k,p}, \mu_p^{\otimes 2})^{(2-i)},$$

is surjective for all $i \in 2J_p$.

3 Relations of a pairing in the 4p-cyclotomic fields

Put $\zeta_{4p} = \zeta_4 \zeta_p = \sqrt{-1}\zeta_p$, $K = \mathbb{Q}(\zeta_{4p}) = \mathbb{Q}(\sqrt{-1}, \zeta_p)$, $k = \mathbb{Q}(\zeta_p)$ $\tilde{\Delta} = \operatorname{Gal}(K/\mathbb{Q})$ and $\Delta = \operatorname{Gal}(k/\mathbb{Q}) \simeq \operatorname{Gal}(K/\mathbb{Q}(\sqrt{-1}))$. We consider Δ as the subgroup of $\tilde{\Delta}$ by this isomorphism. The Dirichlet character group of $\tilde{\Delta}$ is $\{\chi^i \omega^j \mid i = 0, 1, j \in I_p\}$, where $\chi = \chi_{-4}$ is the Dirichlet character associated to $\mathbb{Q}(\sqrt{-1})$. Put $\tilde{e}_{\chi^i \omega^j} = \frac{1}{\sharp \tilde{\Delta}} \sum_{\delta \in \tilde{\Delta}} \chi^i \omega^j(\delta) \delta^{-1} \in \mathbb{Z}_p[\tilde{\Delta}]$. We write $A^{(\chi^i, j)} = \frac{1}{\sharp \tilde{\Delta}} \sum_{\delta \in \tilde{\Delta}} \chi^i \omega^j(\delta) \delta^{-1} \in \mathbb{Z}_p[\tilde{\Delta}]$.

 $\tilde{e}_{\chi^i\omega^j}A$ for a $\mathbb{Z}_p[\tilde{\Delta}]$ -module A, and $A^{(j)}=e_{\omega^j}A$ for a $\mathbb{Z}_p[\Delta]$ -module A. Note that $\tilde{e}_{\chi^0\omega^j}=\frac{1+\tau}{2}e_{\omega^j}$, where $\langle \tau \rangle = \operatorname{Gal}(K/k)$. We similarly write $\alpha^{(\chi^i,j)}$ and $\alpha^{(j)}$ for an element $\alpha \in A$.

Then, we have $I_p = I_{4p,\chi^0} = \{i \in 2J_p \mid A_k^{(1-i)} \simeq A_K^{(\chi^0,1-i)} \neq \{0\}\}$ and $r_p = \sharp I_{4p,\chi^0}$. Put $I_{4p,\chi} = \{i \in J_p \setminus 2J_p \mid A_K^{(\chi,1-i)} \neq \underline{\{0\}}\}$ and $r_{4p,\chi} = \sharp I_{4p,\chi}$.

Even when p splits in $\mathbb{Q}(\sqrt{-1})$, the p-part of the subgroup generated by the ideal classes of prime ideals above p is also trivial in A_K . Hence, as in [8, §2], we have the following exact sequence:

$$0 \to (A_K/pA_K) \otimes \mu_p \to H^2(G_{K,p}, \mu_p^{\otimes 2}) \to \bigoplus_{v|p} \mu_p \to \mu_p \to 0.$$

Since $(A_K/pA_K)^{(\chi,0)}$ is trivial, this sequence implies that

$$(A_K/pA_K)^{(\chi,1-i)}\otimes\mu_p\simeq H^2(G_{K,p},\mu_p^{\otimes 2})^{(\chi,2-i)}$$

for any $i \in I_{4p,\chi}$. We also have

$$(A_k/pA_k)^{(1-i)} \otimes \mu_p \simeq H^2(G_{k,p}, \mu_p^{\otimes 2})^{(2-i)}$$

for any $i \in I_p$.

In §3.1 and §3.2, we consider a pairing whose image is contained in $(A_K/pA_K)^{(\chi^0,1-i)} \otimes \mu_p \simeq (A_k/pA_k)^{(1-i)} \otimes \mu_p$ for $i \in I_p$. In §3.3, we consider a pairing which are contained in $(A_K/pA_K)^{(\chi,1-i)} \otimes \mu_p$ for $i \in I_{4p,\chi}$.

3.1 The p-cyclotomic field

We fix p and $i \in I_p \subset 2J_p$. For $j \in 2J_p$, put

$$j' = 2 - i - j \in 2J_p.$$

In §1–2, we introduced the following pairing:

$$\kappa_{p,i}: \bigoplus_{j \in 2J_p} \left\{ (E'_{k,p})^{(j)} \times (E'_{k,p})^{(j')} \right\} \to (A_k/pA_k)^{(1-i)} \otimes \mu_p$$
$$(c_p^{(j)}, c_p^{(j')}) \mapsto e_{i,j} = \langle c_p^{(j)}, c_p^{(j')} \rangle_i.$$

Proposition 3.1. (cf. [8, §5]) For all even integers a with $4 \le a \le p-1$,

$$\sum_{j \in 2J_p} (1 + a^j - 2^j)(1 - 2^{j'})(1 - (a - 1)^{j'})e_{i,j} = 0.$$

Further, for any $j \in 2J_n$,

$$e_{i,j} + e_{i,j'} = 0.$$

3.2 4p-cyclotomic field I

We fix p and $i \in I_p \subset 2J_p$. For $j \in I_p$, put

$$j' = 2 - i - j.$$

As in §2, we consider the following pairing:

$$\kappa_{4p,i}: \bigoplus_{j \in J_p \setminus 2J_p} \left\{ (E'_{K,p})^{(\chi,j)} \times (E'_{K,p})^{(\chi,j')} \right\} \\
\oplus \bigoplus_{j \in 2J_p} \left\{ (E'_{K,p})^{(\chi^0,j)} \times (E'_{K,p})^{(\chi^0,j')} \right\} \rightarrow (A_K/pA_K)^{(\chi^0,1-i)} \otimes \mu_p \\
 (c^{(\chi,j)}_{4p}, c^{(\chi,j')}_{4p}) & \mapsto f_{i,j} = \langle c^{(\chi,j)}_{4p}, c^{(\chi,j')}_{4p} \rangle_{4p,i}, \\
 (c^{(j)}_{p}, c^{(j')}_{p}) & \mapsto e_{i,j} = \langle c^{(j)}_{p}, c^{(j')}_{p} \rangle_{4p,i},$$

where $c^{(\chi,j)} = [(1-\zeta_{4p})^{(\chi,j)}] \in (E'_{K,p})^{(\chi,j)}$. For $a \in \mathbb{Z}$ and $j \in J_p$, we define

$$u_{a,j} = \begin{cases} 1 & a \equiv 1 \mod 4 \\ 2^j - 1 & a \equiv 3 \mod 4. \end{cases}$$

Proposition 3.2. For all odd integers a with $3 \le a \le p-2$

$$\sum_{j \in J_p \setminus 2J_p} (1 - (-1)^{\frac{a-1}{2}} a^j) f_{i,j} + \sum_{j \in 2J_p} 2^{j-1} (2^j - 1) (a^j - 1) \left(2^{j'-1} (1 - 2^{j'}) + u_{a,j'} (a - 1)^{j'} \right) e_{i,j} = 0.$$

Further, for any $j \in J_p \setminus 2J_p$,

$$f_{i,j} + f_{i,j'} = 0.$$

3.3 4p-cyclotomic field II

We fix p and $i \in I_{4p,\chi} \subset J_p \setminus 2J_p$. For $j \in J_p$, put

$$i' = 2 - i - i.$$

As in §2, we consider the following pairing:

$$\kappa_{4p,\chi,i} : \bigoplus_{j \in J_p \setminus 2J_p} \left\{ (E'_{K,p})^{(\chi,j)} \times (E'_{K,p})^{(\chi^0,j')} \\
\oplus (E'_{K,p})^{(\chi^0,j')} \times (E'_{K,p})^{(\chi,j)} \right\} \to (A_K/pA_K)^{(\chi,1-i)} \otimes \mu_p \\
(c_{4p}^{(\chi,j)}, c_p^{(j')}) & \mapsto g_{i,j} = \langle c_{4p}^{(\chi,j)}, c_p^{(\chi,j)} \rangle_{4p,\chi,i} \\
(c_p^{(j')}, c_{4p}^{(\chi,j)}) & \mapsto g_{i,j'} = \langle c_p^{(j')}, c_{4p}^{(\chi,j)} \rangle_{4p,\chi,i},$$

where $c^{(j')} \in (E'_{k,p})^{(j')} \simeq (E'_{K,p})^{(j')}$.

Proposition 3.3. For all odd integers a with $3 \le a \le p-2$,

$$\sum_{j \in J_p \setminus 2J_p} \{ (1 - (-1)^{\frac{a-1}{2}} a^j) \quad \left(2^{j'-1} (1 - 2^{j'}) + u_{a,j'} (a-1)^{j'} \right) g_{i,j} + 2^{j'-1} (2^{j'} - 1) (1 - a^{j'}) g_{i,j'} \} = 0.$$

For all even integers a with $4 \le a \le p-1$,

$$\sum_{j \in J_p \setminus 2J_p} \{2^{j'-1}(2^{j'}-1) \quad ((a-1)^{j'}-1)g_{i,j} + (1-(-1)^{\frac{a-2}{2}}(a-1)^j) \left(2^{j'-1}(1-2^{j'}) + u_{a+1,j'}a^{j'}\right)g_{i,j'}\} = 0.$$

Further, for any $j \in J_p \setminus 2J_p$,

$$g_{i,j} + g_{i,j'} = 0.$$

3.4 Proofs of propositions

The anti-symmetry relation of each proposition is obtained form the anti-symmetry relation of $K_2(K)$. We prove the other relations by using special cyclotomic units. For $n, a \in \mathbb{Z}_{\geq 1}$, we define the following element of $\mathbb{Q}(\zeta_n)$:

$$\rho_{n,a} = \sum_{j=0}^{a-1} (-\zeta_n)^j = 1 - \zeta_n + \zeta_n^2 + \dots + (-1)^{a-1} \zeta_n^{a-1}.$$

Then, we have

$$\rho_{n,a} = \frac{1 + (-1)^{a-1} \zeta_n^a}{1 + \zeta_n} = \begin{cases} \frac{1 - \zeta_n^a}{1 + \zeta_n} &= \frac{(1 - \zeta_n^a)(1 - \zeta_n)}{1 - \zeta_n^2} & a \equiv 0 \mod 2\\ \frac{1 + \zeta_n^a}{1 + \zeta_n} &= \frac{(1 - \zeta_n^{2a})(1 - \zeta_n)}{(1 - \zeta_n^a)(1 - \zeta_n^2)} & a \equiv 1 \mod 2. \end{cases}$$
(3.1)

For n = 4p, we have

$$1 - \zeta_{4p}^{a} = \begin{cases} 1 - \zeta_{4p}^{a} & a \equiv 1 \mod 2\\ \frac{1 - \zeta_{p}^{2a}}{1 - \zeta_{p}^{a}} & a \equiv 2 \mod 4\\ 1 - \zeta_{p}^{a} & a \equiv 0 \mod 4. \end{cases}$$
(3.2)

As in §1, we denote by $[\varepsilon]$ its class modulo pth power.

Proposition 3.4. (cf. [8, §5]) For n = p or 4p, and $a \in \mathbb{Z}$ with $2 \le a \le p-1$, $\rho_{n,a}$ and $\rho_{n,a-1}$ are p-units in K. Further, the image $\kappa_p([\rho_{n,a}], [\rho_{n,a-1}])$ is trivial in $H^2(G_{K,p}, \mu_p^{\otimes 2})$.

Proof. Note that $a \not\equiv 0, 1 \bmod p$. Since $1-\zeta_p$ and $1-\zeta_{4p}$ are p-units in K, the first assertion follows immediately from (3.2). In the following, $\{x,y\}$ denotes an element in $K_2^M(K)/p$. For n=p, it is easy to see that $\{1-\zeta_n^a,\zeta_n\}=a^{-1}\{1-\zeta_n^a,\zeta_n^a\}=0$ and $\{\rho_{n,a},\zeta_n\}=0$. For n=4p, if $a\equiv 1 \bmod 2$, we have $\{1-\zeta_n^a,\zeta_n\}=a^{-1}\{1-\zeta_n^a,\zeta_n^a\}=0$. If $a\equiv 0 \bmod 2$, as $\zeta_{4p}=\zeta_4\zeta_p$, we also have $\{1-\zeta_n^a,\zeta_n\}=\{1-\zeta_n^a,\zeta_p\}=0$ by the above expression. These imply that $\{\rho_{n,a},\zeta_n\}=0$. Since $\zeta_n\rho_{n,a-1}=\zeta_n-\zeta_n^2+\cdots+(-1)^{a-2}\zeta_n^{a-1}=1-\rho_{n,a}$,

$$\{\rho_{n,a}, \rho_{n,a-1}\} = \{\rho_{n,a}, \zeta_n\} + \{\rho_{n,a}, \rho_{n,a-1}\} = \{\rho_{n,a}, 1 - \rho_{n,a}\} = 0.$$

This implies the second assertion.

Before the proofs of propositions, we give some equalities. For $j \in \mathbb{Z}$ with (j, 4p) = 1, let δ_j be an element of $\operatorname{Gal}(\mathbb{Q}(\zeta_{4p})/\mathbb{Q})$ satisfying $\zeta_{4p}^{\delta_j} = \zeta_{4p}^j$. Let $a \in \mathbb{Z}$ with $1 \le a \le p-1$. We have

$$[(1-\zeta_p^a)^{(\chi^0,j)}] = [(1-\zeta_p^a)^{\frac{1+\tau}{2}e_{\omega_j}}] = [(1-\zeta_p^a)^{(j)}] = [((1-\zeta_p)^{\delta_a})^{(j)}] = (c^{(j)})^{\omega^j(\delta_a)} = (c^{(j)})^{a^j}$$
(3.3)

and

$$[(1 - \zeta_p^a)^{(\chi,j)}] = [1]. \tag{3.4}$$

Further, if $a \equiv 1 \mod 2$, we have

$$[(1 - \zeta_{4p}^a)^{(\chi^0, j)}] = [(1 - \zeta_{4p}^a)^{\frac{1+\tau}{2}} e_{\omega_j}] = \left[\left(\frac{1 - \zeta_p^{4a}}{1 - \zeta_p^{2a}} \right)^{(j)\frac{1}{2}} \right] = [(c^{(j)})^{2^{-1}(2a)^j(2^j - 1)}]$$
(3.5)

and

$$[(1 - \zeta_{4p}^a)^{(\chi,j)}] = [((1 - \zeta_{4p})^{\delta_a})^{(\chi,j)}] = (c^{(\chi,j)})^{\chi\omega^j(\delta_a)} = (c^{(\chi,j)})^{\chi(a)a^j} = (c^{(\chi,j)})^{(-1)^{\frac{a-1}{2}}a^j}.$$
(3.6)

The first relation of Proposition 3.1. By Proposition 3.4, we have

$$\{\rho_{p,a}, \rho_{p,a-1}\} = \left\{ \frac{(1-\zeta_p^a)(1-\zeta_p)}{1-\zeta_p^2}, \frac{(1-\zeta_p^{2(a-1)})(1-\zeta_p)}{(1-\zeta_p^{a-1})(1-\zeta_p^2)} \right\} = 0.$$

By (3.3), the contribution of $\rho_{p,a}^{(j)}$ to the coefficient is

$$a^{j} + 1 - 2^{j}$$
.

and that of $\rho_{p,a-1}^{(j')}$ is

$$(2(a-1))^{j'} + 1 - (a-1)^{j'} - 2^{j'} = (1-2^{j'})(1 - (a-1)^{j'}).$$

Therefore, we obtain the first relation.

The first relation of Proposition 3.2. By Proposition 3.4, we have

$$\{\rho_{4p,a}, \rho_{4p,a-1}\} = \left\{ \frac{(1 - \zeta_{4p}^{2a})(1 - \zeta_{4p})}{(1 - \zeta_{4p}^{a})(1 - \zeta_{4p}^{2})}, \frac{(1 - \zeta_{4p}^{a-1})(1 - \zeta_{4p})}{1 - \zeta_{4p}^{2}} \right\} = 0.$$

By (3.4) and (3.6), the contribution of $\rho_{4p,a}^{(\chi,j)}$ to the coefficient is

$$1 - \chi(a)a^{j} = 1 - (-1)^{(a-1)/2}a^{j},$$

and that of $\rho_{4p,a-1}^{(\chi,j')}$ is 1. On the other hand, by (3.2), (3.3) and (3.5), the contribution of $\rho_{4p,a}^{(\chi^0,j)}$ is

$$(4a)^{j} - (2a)^{j} + 2^{-1}2^{j}(2^{j} - 1) - 2^{-1}(2a)^{j}(2^{j} - 1) - (4^{j} - 2^{j}) = 2^{j-1}(2^{j} - 1)(a^{j} - 1),$$

and that of $\rho_{4p,a-1}^{(\chi^0,j')}$ is

$$\begin{cases} (a-1)^{j'} + 2^{-1}2^{j'}(2^{j'} - 1) - (4^{j'} - 2^{j'}) = 2^{j'-1}(1 - 2^{j'}) + (a-1)^{j'} & a \equiv 1 \bmod 4 \\ (2(a-1))^{j'} - (a-1)^{j'} + 2^{-1}2^{j'}(2^{j'} - 1) - (4^{j'} - 2^{j'}) \\ & = 2^{j'-1}(1 - 2^{j'}) + (2^{j'} - 1)(a-1)^{j'} & a \equiv 3 \bmod 4 \end{cases}$$

that is, $2^{j'-1}(1-2^{j'}) + u_{a,j'}(a-1)^{j'}$. Therefore, we obtain the first relation.

The first and second relations of Proposition 3.3. For an odd integer a, by Proposition 3.4, we have

$$\{\rho_{4p,a}, \rho_{4p,a-1}\} = \left\{ \frac{(1 - \zeta_{4p}^{2a})(1 - \zeta_{4p})}{(1 - \zeta_{4p}^{a})(1 - \zeta_{4p}^{2})}, \frac{(1 - \zeta_{4p}^{a-1})(1 - \zeta_{4p})}{1 - \zeta_{4p}^{2}} \right\} = 0.$$

By (3.4) and (3.6), the contribution of $\rho_{4p,a}^{(\chi,j)}$ to the coefficient is

$$1 - \chi(a)a^{j} = 1 - (-1)^{(a-1)/2}a^{j},$$

and that of $\rho_{4p,a-1}^{(\chi^0,j')}$ is

$$2^{j'-1}(1-2^{j'}) + u_{a,j'}(a-1)^{j'}$$

as in Proposition 3.2.

On the other hand, by (3.2), (3.3) and (3.5), the contribution of $\rho_{4p,a}^{(\chi^0,j')}$ is

$$2^{j'-1}(2^{j'}-1)(a^{j'}-1),$$

and that of $\rho_{4p,a-1}^{(\chi,j)}$ is 1. Therefore, we obtain the first relation.

For an even integer a, by Proposition 3.4, we have

$$\{\rho_{4p,a}, \rho_{4p,a-1}\} = \left\{ \frac{(1-\zeta_{4p}^a)(1-\zeta_{4p})}{1-\zeta_{4p}^2}, \frac{(1-\zeta_{4p}^{2(a-1)})(1-\zeta_{4p})}{(1-\zeta_{4p}^{a-1})(1-\zeta_{4p}^2)} \right\} = 0.$$

By (3.4) and (3.6), the contribution of $\rho_{4p,a}^{(\chi,j)}$ to the coefficient is 1, and that of $\rho_{4p,a-1}^{(\chi^0,j')}$ is

$$(4(a-1))^{j'} - (2(a-1))^{j'} + 2^{-1}2^{j'}(2^{j'}-1) - (2^{-1}(2(a-1))^{j'}(2^{j'}-1)) - (4^{j'}-2^{j'})$$

$$= 2^{j'-1}(2^{j'}-1)((a-1)^{j'}-1).$$

On the other hand, by (3.2), (3.3) and (3.5), the contribution of $\rho_{4p,a}^{(\chi^0,j')}$ is

$$\begin{cases} a^{j'} + 2^{-1}2^{j'}(2^{j'} - 1) - (4^{j'} - 2^{j'}) &= 2^{j'-1}(1 - 2^{j'}) + a^{j'} & a \equiv 0 \bmod 4 \\ (2a)^{j'} - a^j + 2^{-1}2^{j'}(2^{j'} - 1) - (4^{j'} - 2^{j'}) &= 2^{j'-1}(1 - 2^{j'}) + (2^{j'} - 1)a^{j'} & a \equiv 2 \bmod 4, \end{cases}$$

that is, $2^{j'-1}(1-2^{j'}) + u_{a+1,j'}a^{j'}$. By (3.2), (3.4) and (3.6), that of $\rho_{4p,a-1}^{(\chi,j)}$ is

$$1 - (-1)^{\frac{a-2}{2}} (a-1)^{j}$$
.

Therefore, we obtain the second relation.

4 Proof of Theorems 1.2 and 1.3

First, by [5] and numerical results on Iwasawa invariants in [17], the following conjecture (a special version of Conjecture 4.3.5(ii) in [13]) holds for p < 20,000,000.

Conjecture 4.1. $\kappa_{p,i}$ and $\kappa_{4p,i}$ (resp. $\kappa_{4p,\chi,i}$) are nontrivial maps for all p and $i \in I_p$, (resp. $I_{4p,\chi}$).

Next, put

$$I_{4n} = I_n \cup I_{4n,\gamma} \subset J_n$$

 $S_{4p,even} = \{j \in 2J_p \, | \, e_{i,j} \neq 0 \ \text{ for any } i \in I_p \ \text{ and } \ g_{i,j'} \neq 0 \ \text{ for any } i \in I_{4p,\chi}\},$

$$S_{4p,odd} = \{ j \in J_p \setminus 2J_p \mid f_{i,j} \neq 0 \text{ for any } i \in I_p \text{ and } g_{i,j} \neq 0 \text{ for any } i \in I_{4p,\chi} \},$$

 $S_{4p} = S_{4p,even} \cup S_{4p,odd},$

 $r_{4p} = \sharp I_{4p}$ and $s_{4p} = \sharp S_{4p}$. Since there are only one prime ideal above p in K when $p \equiv 3 \mod 4$, we can show the following theorem for $K = \mathbb{Q}(\zeta_{4p})$ by the argument of the proof of Theorem 1.1.

Theorem 4.1. Assume that $A_k^{(j)}$ is trivial for any $j \in 2J_p$ and that $A_K^{(\chi,j)}$ is trivial for any $j \in J_p \setminus 2J_p$. When $p \equiv 3 \mod 4$, the height of $\operatorname{Ann}_{\tilde{\Lambda}} X_{\infty}(K)$ in $\tilde{\Lambda} = \tilde{\Lambda}(K)$ is one more than the maximal number of disjoint translates $j + I_{4p}$ with $j \in S_{4p}$, and

$$\operatorname{ht}_{\tilde{\Lambda}}(\operatorname{Ann}_{\tilde{\Lambda}}X_{\infty}(K)) \ge \frac{s_{4p}}{r_{4p}^2 - r_{4p} + 1} + 1.$$

Proof. We outline the proof for readers' convenience (for details, see the proof of [12, Theorem 4.2 and Corollary 4.3]). For an algebraic extension F over \mathbf{Q} , let X_F be the Galois group of the maximal unramified abelian p-extension over F, and Y_F the Galois group of the maximal unramified abelian p-extension in which every prime above p in F splits completely over F.

Let $j_1, j_2, \ldots, j_d \in J_p$ be such that the translates $j_s + I_{4p}$ are all disjoint as s runs over $1 \leq s \leq d$. Let L_s denote the unique \mathbf{Z}_p -extension of K_{cyc} Galois over \mathbf{Q} and abelian over K that contains a pth root of $c_p^{(j_s)}$ (resp. $c_{4p}^{(\chi,j_s)}$) for $j_s \in 2J_p$ (resp. $J_p \setminus 2J_p$). Let $M_s = L_1L_2 \cdots L_s$ for $1 \leq s \leq d$ and set $M_0 = K_{cyc}$. Suppose by induction on d that $Y_{M_{d-1}} \simeq X_{K_{cyc}}$. Put $G = \operatorname{Gal}(M_d/K_{cyc})$. $H = \operatorname{Gal}(M_d/M_{d-1})$ and $T = \operatorname{Gal}(M_d/L_d)$. By the assumption $j_d \in S_{4p}$, we can show that

$$Y_{L_d} \simeq X_{K_{cuc}}$$

(see [12, Proposition 3.3]). Since there is only one prime in M_d over p which is totally ramified in M_d/K , we have

$$(Y_{M_d})_T \simeq Y_{L_d}$$
,

where $(Y_{M_d})_T$ is the T-coinvariant quotient of Y_{M_d} . From this, we can show that

$$I_T Y_{M_d} \subseteq I_H Y_{M_d}$$
,

where I_T (resp. I_H) is the augmentation ideal for T (resp. H) in $\mathbf{Z}_p[[G]]$. Consider for N = H and N = T the natural surjective $\mathbf{Z}_p[\tilde{\Delta}]$ -homomorphism

$$\pi_N: X_{K_{cuc}} \otimes_{\mathbf{Z}_n} N \to (I_N Y_{M_d})_G,$$

with

$$\pi_N(x \otimes \sigma) = (\sigma - 1)\tilde{x} \mod I_G I_N Y_{M_d},$$

where $\tilde{x} \in Y_{M_d}$ restricts to x. Since the $\mathbf{Z}_p[\tilde{\Delta}]$ -eigenspaces of $X_{K_{cyc}} \otimes_{\mathbf{Z}_p} N$ are nontrivial outside of those of the character ω^{2-i-jt} or $\chi \omega^{2-i-jt}$ with $i \in I_{4p}$ and $1 \le t \le d-1$ if N = T and t = d if N = H, we have that $(I_N Y_{M_d})_G$ is also nontrivial at most in these eigenspaces. Since the $j_t + I_{4p}$ are all disjoint, the canonical map

$$(I_T Y_{M_d})_G \to (I_H Y_{M_d})_G$$

is zero. From this, we can show $(I_H Y_{M_d})_G = 0$, that is,

$$Y_{M_d} \simeq (Y_{M_d})_H \simeq Y_{M_{d-1}} \simeq X_{K_{cuc}}$$

Since there exists only one prime over p in M_d , the kernel of $X_{M_d} o Y_{M_d}$ is a quotient of \mathbf{Z}_p , so X_{M_d} is finitely generated over \mathbf{Z}_p . By [12, Corollary 2.3], the annihilator of $X_{\tilde{K}}$ has height at least d+1 as a $\tilde{\Lambda}(K)$ -module. The inequality can be obtained in a similar way to that in Theorem 1.1.

By these results, the following numerical data imply Theorems 1.2 and 1.3.

4.1 The *p*-cyclotomic field

Following computation in [12], we compute up to $p < 2^{16} = 65,536$.

Table 2. The distribution of p with $r_p = r$.

r	0	1	2	3	4	≥ 5
The number of p	3976	1979	497	86	4	0

We obtain the following table.

Table 3. The distribution of (p, i) with $z_{p,i} = m$.

			1-		F 7	-			
m	2	3	4	5	6	7	8	9	10
$\sharp(p,i) \equiv (1,0) \mod 4$	642	0	155	0	19	0	0	0	0
$\sharp(p,i) \equiv (1,2) \mod 4$	0	0	597	0	165	0	19	0	2
$\sharp(p,i) \equiv (3,0) \mod 4$									
$\sharp(p,i) \equiv (3,2) \mod 4$	0	648	0	166	0	20	0	2	0

Put $z_{p,i} = \sharp \{j \in 2J_p \mid e_{i,j} = 0\}$. First, we note that there are pairs of zeros by anti-symmetry $e_{i,j} = -e_{i,j'}$ when $j \neq j'$. In this paper, "index zeros" mean the pair of zeros which come from the index i, and "self zeros" mean zeros which come from the relation $\langle c, c \rangle = 0$. The other zeros are called "nontrivial zeros". We denote by $2z'_{p,i}$ the number of "nontrivial zeros" for p and i. By definition, we have

$$z_{p,i}=\sharp\{\text{nontrivial zeros}\}+\sharp\{\text{index zeros}\}+\sharp\{\text{self zeros}\}.$$

Since the number of index zeros is 2, we have

$$z_{p,i} = 2z'_{p,i} + 2 + \begin{cases} 0 & (p,i) \equiv (1,0) \mod 4 \\ 2 & (p,i) \equiv (1,2) \mod 4 \\ 1 & p \equiv 3 \mod 4. \end{cases}$$

The distribution of $z'_{n,i}$ is similar to the Poisson distribution Po(1/4) as follows.

Table 4. The distribution of (p, i) with $z'_{p,i} = m$.

m	0	1	2	3
The number of (p, i)		640	80	4
ratio	0.77702	0.19711	0.02464	0.00123
Po(1/4)	0.77880	0.19470	0.02434	0.00203

In the following examples, we write the ratio of $e_{i,j}$ to $e_{i,0}$. There is no pair (p,i) with $e_{i,0} = 0$ in $p < 2^{16}$. We add the subscript j to zeros.

Example 4.1.

- (1) $z_{101.68} = 4 = 2 + 2 + 0$ (nontrivial: 46-88, index: 66-68)
- 1, 84, 84, 89, 35, 29, 48, 15, 70, 31, 86, 53, 72, 66, 12, 17, 17, 100, 45, 61, 5, 75, 38, 0₄₆, 40, 20, 30, 66, 9, 28, 37, 95, 13, 0₆₆, 0₆₈, 88, 6, 64, 73, 92, 35, 71, 81, 61, 0₈₈, 63, 26, 96, 40, 56.
- (2) $z_{379,100} = 3 = 0 + 2 + 1$ (index: 100-180, self: 140)
- $1, 97, \ldots, 279, 159, 0_{100}, 258, \ldots, 168, 0_{140}, 211, 173, \ldots, 140, 121, 0_{180}, 220, \ldots, 140, 206.$
- (3) $z_{379,174} = 3 = 0 + 2 + 1$ (index: 32-174, self: 292)
- $1,\ 310,\ \ldots,\ 51,\ 0_{32},\ 44,\ 143,\ \ldots,\ 236,\ 335,\ 0_{174},\ 328,\ 270,\ \ldots,\ 325,\ 2,\ 0_{292},\ 377,\ 54,\ \ldots,\ 91,\ 63.$

4.2 The 4p-cyclotomic field I

Put $z_{4p,i} = \sharp \{j \in J_p \setminus 2J_p \mid f_{i,j} = 0\}$. We obtain the following tables.

Table 5. The distribution of of (p, i) with $z_{4p,i} = m$.

m	0	1	2	3	4	5	6	7	8
$\sharp(p,i) \equiv (1,0) \mod 4$	0	0	617	0	180	0	16	0	3
$\sharp(p,i) \equiv (1,2) \mod 4$	612	0	152	0	17	0	2	0	0
$\sharp(p,i) \equiv (3,0) \mod 4$	0	620	0	171	0	20	0	1	0
$\sharp(p,i) \equiv (3,2) \mod 4$	0	666	0	153	0	16	0	1	0

We can classify zeros into three types of zeros as in the *p*-cyclotomic case. Then, since the number of index zeros is 0, $z_{4p,i} = \sharp \{\text{nontrivial zeros}\} + \sharp \{\text{self zeros}\}$:

$$z_{4p,i} = 2z'_{4p,i} + \begin{cases} 2 & (p,i) \equiv (1,0) \mod 4 \\ 0 & (p,i) \equiv (1,2) \mod 4 \\ 1 & p \equiv 3 \mod 4. \end{cases}$$

The distribution of $z'_{4p,i}$ is also similar to the Poisson distribution Po(1/4) as follows.

Table 6. The distribution of (p, i) with $z'_{4p,i} = m$.

		(= / /	\mathbf{I}_{P}, ι	
m	0	1	2	3
The number of (p, i)	2515	656	69	7
ratio	0.77456	0.20203	0.02125	0.00216
Po(1/4)	0.77880	0.19470	0.02434	0.00203

In the following examples, we write the ratio of $f_{i,j}$ to $e_{i,0}$. We add the subscript j to zeros.

Example 4.2.

- (1) $z_{4\cdot379,100} = 3 = 2 + 1$ (nontrivial: 317-341, self: 329)
- $2, 98, \ldots, 137, 0_{317}, 212, 13, 262, 310, 227, 0_{329}, 152, 69, 117, 366, 167, 0_{341}, 242, \ldots, 45, 5.$
- (2) $z_{4\cdot379,174} = 3 = 2 + 1$ (nontrivial: 267-317, self: 103)
- $306, 29, \ldots, 193, 121, 0_{103}, 258, \ldots, 225, 0_{267}, 89, \ldots, 347, 290, 0_{317}, 154, 124, \ldots, 36, 141.$
- (3) $z_{4.929.820} = 6 = 4 + 2$ (nontrivial: 1-109, 139-899, self: 55, 519)
- 0_1 , 383, ..., 68, 0_{55} , 861, 670, 750, ..., 7, 546, 0_{110} , 110, 75, ..., 69, 394, 0_{139} , 272, 299, ..., 804, 829, 104, 461, 0_{519} , 468, 825, ..., 630, 657, 0_{899} , 535, 860, ..., 854, 819.

The zeros 0_{317} in (1) and (2) are very rare, because they come from the nontriviality of the p-part of the ideal class group of the maximal totally real subfield K^+ of K. In other words, they come from the nontriviality of χ_{-4} -part of $K_{4m+2}(\mathbb{Z}[\sqrt{-1}])[p]$, where p=379 is the unique prime number satisfying the nontriviality in p < 20,000,000 (cf. [15, 16, 17]).

The zeros 0_1 in (3) is rare, because there is only one pair (p, i) = (929, 820) satisfying the condition in $p < 2^{16}$ and $i \in I_p$.

4.3 The 4p-cyclotomic field II

Table 7. The distribution of p with $r_{4p,\chi} = r$.

			- P		P,χ		
r	0	1	2	3	4	5	≥ 6
The number of p	3960	1993	492	80	14	3	0

Put $z_{4p,\chi,i} = \sharp \{j \in J_p \mid g_{i,j} = 0\}$. We obtain the following tables except for (p,i) = (9511, 2221), (12073, 7547), (13367, 5331), (30241, 19981), (31649, 8903), for which the relations in Proposition 3.2 is clearly insufficient, because $2^{2-i} \equiv 1$ or $2 \mod p$ (cf. [8, §5]). This issue would be resolved by using additional relations in [3] and [10].

Table 8. The distribution of of (p, i) with $z_{4p,\chi,i} = m$.

										1 // //					
m		0	1	2	3	4	5	6	7	8	9	10	11	12	?
$\sharp(p,i) \equiv (1,1)$) mod 4	0	0	478	0	244	0	58	0	16	0	1	0	0	1
$\sharp(p,i) \equiv (1,3)$	$\mod 4$	0	0	504	0	235	0	63	0	11	0	1	0	0	2
$\sharp(p,i) \equiv (3,1)$	$\mod 4$	0	0	511	0	259	0	64	0	10	0	2	0	1	1
$\sharp(p,i) \equiv (3,3)$	$) \mod 4$	0	0	520	0	235	0	56	0	13	0	1	0	0	1

Here $z_{4p,\chi,i}$ is even, because $g_{i,j} = -g_{i,j'}$ with $j \not\equiv j' \mod 2$. We can classify zeros into three types of zeros as in the *p*-cyclotomic case. Then, since the number of self zeros is 0, $z_{4p,\chi,i} = \sharp \{\text{nontrivial zeros}\} + \sharp \{\text{index zeros}\}$:

$$z_{4p,\chi,i} = 2z'_{p,\chi,i} + 2.$$

The distribution of $z'_{4p,\chi,i}$ is similar to the Poisson distribution Po(1/2) as follows.

Table 9. The distribution of (p,i) with $z'_{4p,\chi,i}=m$.

				I //()		
m	0	1	2	3	4	5
The number of (p, i)	2013	973	241	50	5	1
ratio	0.61316	0.29638	0.07341	0.01523	0.00152	0.00030
Po(1/2)	0.60653	0.30327	0.07582	0.01264	0.00158	0.00016

In the following examples, we write the ratio of $g_{i,j}$ to $g_{i,1}$ (resp. $g_{i,j}$ to $g_{i,p-2}$) if $g_{i,1} \neq 0$ (resp. $g_{i,1} = 0$). We add the subscript j to zeros.

Example 4.3.

- (1) $z_{4\cdot379,\chi,317} = 2 = 0 + 2$ (index: 317-317')
- $1, 109, \ldots, 285, 369, 0_{317}, 331, 119, \ldots, 354, 222,$
- -1, -109, ..., -285, -369, $0_{317'}$, -331, -119, ..., -354, -222.
- (2) $z_{4.941,\chi,687} = 4 = 2 + 2$ (nontrivial 1-1', index: 687-687')
- 0_1 , 413, 589, 110, ..., 257, 437, 0_{687} , 314, 569, 300, 212, ..., 462, 331, 596, 13, 1,
- $0_{1'}$, -413, -589, -110, ..., -257, -437, $0_{687'}$, -314, -569, -300, -212, ..., -462, -331, -596, -13, -1.

The zero 0_1 in (2) is rare, because there is only one pair (p, i) = (941, 887) satisfying the condition in $p < 2^{16}$ and $i \in I_{4p,\chi}$. There is no zero 0_j with $j \equiv 2 - i \mod (p-1)$ and $j' \equiv 0 \mod (p-1)$ in the range.

Our programs are written in C-language. They and further data are available in our web page: https://math0.pm.tokushima-u.ac.jp/~hiroki/major/galois1-e.html. These data were obtained by two personal computers (CPU: AMD Ryzen 9, 3900X and 5950X, RAM: 64GB and 128GB) for two months.

References

- [1] J. Ax, On the units of an algebraic number field, Illinois J. Math. 9 (1965), 584–589.
- [2] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124.
- [3] C. Busuioc, The Steinberg symbol and special values of L-functions, Trans. Am. Math. Soc. **360** (2008), 5999–6015.
- [4] A.A. Cuoco and P. Monsky, Class numbers in \mathbb{Z}_p^d -extensions, Math. Ann. **255** (1981), 235–258.

- [5] T. Fukaya and K. Kato, On Conjectures of Sharifi (to appear), Kyoto J. Math.
- [6] R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J. Math. 95 (1973), 204–214.
- [7] W. Hart, D. Harvey, and W. Ong, Irregular primes to two billion, Math. Comp. 86 (2017), 3031–3049.
- [8] W.G. McCallum and R.T. Sharifi, A cup product in the Galois cohomology of number fields, Duke Math. **120** (2003), 269–310.
- [9] P. Monsky, Some invariants of \mathbb{Z}_p^d -extensions, Math. Ann. **255** (1981), 229–233.
- [10] R.T. Sharifi, Computations on Milnor's K_2 of Integer Rings, slides on 5/17/04-http://www.math.ucla.edu/~sharifi/dagslides.pdf.
- [11] _____, Iwasawa theory and the Eisenstein ideal, Duke Math. J. 137 (2007), 63–101.
- [12] _____, On Galois groups of unramified pro-p extensions, Math. Ann. 342 (2008), 297–308.
- [13] R.T. Sharifi and A. Venkatesh, Eisenstein cocycles in motivic cohomology (preprint), https://www.math.ucla.edu/sharifi/eisensymbol.pdf.
- [14] C. Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251–295.
- [15] H. Sumida-Takahashi, Computation of the p-part of the ideal class group of certain real abelian fields, Math. Comp. **76** (2007), 1059–1071.
- [16] _____, Examples of the Iwasawa invariants and the higher K-groups associated to quadratic fields, J. Math. Univ. Tokushima 41 (2007), 33–41.
- [17] _____, A generalized problem associated to the Kummer-Vandiver conjecture (online), Arnold Math. J. (2022).